← Back

Cardiovascular Disease

Topic spotlight
TopicWorld Wide

cardiovascular disease

Discover seminars, jobs, and research tagged with cardiovascular disease across World Wide.
7 curated items7 Seminars
Updated over 1 year ago
7 items · cardiovascular disease
7 results
SeminarNeuroscience

MBI Webinar on preclinical research into brain tumours and neurodegenerative disorders

Ekaterina (Caty) Salimova and Ms Sanjeevini Babu Reddiar
Apr 12, 2022

WEBINAR 1 Breaking the barrier: Using focused ultrasound for the development of targeted therapies for brain tumours presented by Dr Ekaterina (Caty) Salimova, Monash Biomedical Imaging Glioblastoma multiforme (GBM) - brain cancer - is aggressive and difficult to treat as systemic therapies are hindered by the blood-brain barrier (BBB). Focused ultrasound (FUS) - a non-invasive technique that can induce targeted temporary disruption of the BBB – is a promising tool to improve GBM treatments. In this webinar, Dr Ekaterina Salimova will discuss the MRI-guided FUS modality at MBI and her research to develop novel targeted therapies for brain tumours. Dr Ekaterina (Caty) Salimova is a Research Fellow in the Preclinical Team at Monash Biomedical Imaging. Her research interests include imaging cardiovascular disease and MRI-guided focused ultrasound for investigating new therapeutic targets in neuro-oncology. - WEBINAR 2 Disposition of the Kv1.3 inhibitory peptide HsTX1[R14A], a novel attenuator of neuroinflammation presented by Sanjeevini Babu Reddiar, Monash Institute of Pharmaceutical Sciences The voltage-gated potassium channel (Kv1.3) in microglia regulates membrane potential and pro-inflammatory functions, and non-selective blockade of Kv1.3 has shown anti-inflammatory and disease improvement in animal models of Alzheimer’s and Parkinson’s diseases. Therefore, specific inhibitors of pro-inflammatory microglial processes with CNS bioavailability are urgently needed, as disease-modifying treatments for neurodegenerative disorders are lacking. In this webinar, PhD candidate Ms Sanju Reddiar will discuss the synthesis and biodistribution of a Kv1.3-inhibitory peptide using a [64Cu]Cu-DOTA labelled conjugate. Sanjeevini Babu Reddiar is a PhD student at the Monash Institute of Pharmaceutical Sciences. She is working on a project identifying the factors governing the brain disposition and blood-brain barrier permeability of a Kv1.3-blocking peptide.

SeminarNeuroscienceRecording

Why is the suprachiasmatic nucleus such a brilliant circadian time-keeper?

Michael Hastings
MRC Laboratory of Molecular Biology, Cambridge
Feb 7, 2022

Circadian clocks dominate our lives. By creating and distributing an internal representation of 24-hour solar time, they prepare us, and thereby adapt us, to the daily and seasonal world. Jet-lag is an obvious indicator of what can go wrong when such adaptation is disrupted acutely. More seriously, the growing prevalence of rotational shift-work which runs counter to our circadian life, is a significant chronic challenge to health, presenting as increased incidence of systemic conditions such as metabolic and cardiovascular disease. Added to this, circadian and sleep disturbances are a recognised feature of various neurological and psychiatric conditions, and in some cases may contribute to disease progression. The “head ganglion” of the circadian system is the suprachiasmatic nucleus (SCN) of the hypothalamus. It synchronises the, literally, innumerable cellular clocks across the body, to each other and to solar time. Isolated in organotypic slice culture, it can maintain precise, high-amplitude circadian cycles of neural activity, effectively, indefinitely, just as it does in vivo. How is this achieved: how does this clock in a dish work? This presentation will consider SCN time-keeping at the level of molecular feedback loops, neuropeptidergic networks and neuron-astrocyte interactions.

SeminarNeuroscience

Monash Biomedical Imaging highlights from 2021 and looking ahead to 2022

Gary Egan
Monash Biomedical Imaging
Dec 8, 2021

Despite the challenges COVID-19 has continued to present, Monash Biomedical Imaging (MBI) has had another outstanding year in terms of publications and scientific output. In this webinar, Professor Gary Egan, Director of MBI, will present an overview of MBI’s achievements during 2021 and outline the biomedical imaging research programs and partnerships in 2022. His presentation will cover: • MBI operational and research achievements during 2021 • Biomedical imaging technology developments and research outcomes during 2021 • Linked laboratories and research teams at MBI • Progress on the development of a cyclotron and precision radiopharmaceutical facility at Clayton • Emerging research opportunities at the Monash Heart Hospital in cardiology and cardiovascular disease. Professor Gary Egan is Director of Monash Biomedical Imaging, Director of the ARC Centre of Excellence for Integrative Brain Function and a Distinguished Professor at the Turner Institute for Brain and Mental Health, Monash University. He is also lead investigator of the Victorian Biomedical Imaging Capability, and Deputy Director of the Australian National Imaging Facility. His substantive body of published work has made a significant impact on the neuroimaging and neuroscience fields. He has sustained success in obtaining significant grants to support his own research and the development of facilities to advance biomedical imaging.

SeminarNeuroscience

Developing metal-based radiopharmaceuticals for imaging and therapy

Brett Paterson and Cormac Kelderman
Monash Biomedical Imaging
Jul 7, 2021

Personalised medicine will be greatly enhanced with the introduction of new radiopharmaceuticals for the diagnosis and treatment of various cancers, as well as cardiovascular disease and brain disorders. The unprecedented interest in developing theranostic radiopharmaceuticals is mainly due to the recent clinical successes of radiometal-based products including: • 177LuDOTA-TATE (trade name Lutathera, FDA approved in 2018), a peptide-based tracer that is used for treating metastatic neuroendocrine tumours • Ga 68 PSMA-11 (FDA approved in 2020), a positron emission tomography agent for imaging prostate-specific membrane antigen positive lesions in men with prostate cancer. In this webinar, Dr Brett Paterson and PhD candidate Mr Cormac Kelderman will present their research on developing the chemistry and radiochemistry to produce new radiometal-based imaging and therapy agents. They will discuss the synthesis of new molecules, the optimisation of the radiochemistry, and results from preclinical evaluations. Dr Brett Paterson is a National Imaging Facility Fellow at Monash Biomedical Imaging and academic group leader in the School of Chemistry, Monash University. His research focuses on the development of radiochemistry and new radiopharmaceuticals. Cormac Kelderman is a PhD candidate under the supervision of Dr Brett Paterson in the School of Chemistry, Monash University. His research focuses on developing new bis(thiosemicarbazone) chelators for technetium-99m SPECT imaging.

SeminarNeuroscience

Neuroimmune interactions in Cardiovascular Diseases

Daniela Carnevale
“Sapienza” University of Rome
Mar 28, 2021

The nervous system and the immune system share the common ability to exert gatekeeper roles at the interfaces between internal and external environment. Although interaction between these two evolutionarily highly conserved systems is long recognized, the pathophysiological mechanisms regulating their reciprocal crosstalk in cardiovascular diseases became object of investigation only more recently. In the last years, our group elucidated how the autonomic nervous system controls the splenic immunity recruited by hypertensive challenges. In my talk, I will focus on the molecular mechanisms that regulate the neuro-immune crosstalk in hypertension. I will elaborate on the mechanistic insights into this brain-spleen axis led us uncover a new molecular pathway mediating the neuroimmune interaction established by noradrenergic-mediated release in the spleen of placental growth factor (PlGF), an angiogenic growth factor potentially targetable with pharmacological approaches.