Categorization
categorization
N/A
We are seeking an outstanding researcher with expertise in computational or mathematical psychology to join the Complex Human Data Hub and contribute to the school’s research and teaching program. The CHDH has areas of strength in memory, perception, categorization, decision-making, language, cultural evolution, and social network analysis. We welcome applicants from all areas of mathematical psychology, computational cognitive science, computational behavioural science and computational social science and are especially interested in applicants who can build upon or complement our existing strengths. We particularly encourage applicants whose theoretical approaches and methodologies connect with social network processes and/or culture and cognition, or whose work links individual psychological processes to broader societal processes. We especially encourage women and other minorities to apply.
Brain and Behavior: Employing Frequency Tagging as a Tool for Measuring Cognitive Abilities
Frequency tagging based on fast periodic visual stimulation (FPVS) provides a window into ongoing visual and cognitive processing and can be leveraged to measure rule learning and high-level categorization. In this talk, I will present data demonstrating highly proficient categorization as living and non-living in preschool children, and characterize the development of this ability during infancy. In addition to associating cognitive functions with development, an intriguing question is whether frequency tagging also captures enduring individual differences, e.g. in general cognitive abilities. First studies indicate high psychometric quality of FPVS categorization responses (XU et al., Dzhelyova), providing a basis for research on individual differences. I will present results from a pilot study demonstrating high correlations between FPVS categorization responses and behavioral measures of processing speed and fluid intelligences. Drawing upon this first evidence, I will discuss the potential of frequency tagging for diagnosing cognitive functions across development.
Learning through the eyes and ears of a child
Young children have sophisticated representations of their visual and linguistic environment. Where do these representations come from? How much knowledge arises through generic learning mechanisms applied to sensory data, and how much requires more substantive (possibly innate) inductive biases? We examine these questions by training neural networks solely on longitudinal data collected from a single child (Sullivan et al., 2020), consisting of egocentric video and audio streams. Our principal findings are as follows: 1) Based on visual only training, neural networks can acquire high-level visual features that are broadly useful across categorization and segmentation tasks. 2) Based on language only training, networks can acquire meaningful clusters of words and sentence-level syntactic sensitivity. 3) Based on paired visual and language training, networks can acquire word-referent mappings from tens of noisy examples and align their multi-modal conceptual systems. Taken together, our results show how sophisticated visual and linguistic representations can arise through data-driven learning applied to one child’s first-person experience.
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
Building System Models of Brain-Like Visual Intelligence with Brain-Score
Research in the brain and cognitive sciences attempts to uncover the neural mechanisms underlying intelligent behavior in domains such as vision. Due to the complexities of brain processing, studies necessarily had to start with a narrow scope of experimental investigation and computational modeling. I argue that it is time for our field to take the next step: build system models that capture a range of visual intelligence behaviors along with the underlying neural mechanisms. To make progress on system models, we propose integrative benchmarking – integrating experimental results from many laboratories into suites of benchmarks that guide and constrain those models at multiple stages and scales. We show-case this approach by developing Brain-Score benchmark suites for neural (spike rates) and behavioral experiments in the primate visual ventral stream. By systematically evaluating a wide variety of model candidates, we not only identify models beginning to match a range of brain data (~50% explained variance), but also discover that models’ brain scores are predicted by their object categorization performance (up to 70% ImageNet accuracy). Using the integrative benchmarks, we develop improved state-of-the-art system models that more closely match shallow recurrent neuroanatomy and early visual processing to predict primate temporal processing and become more robust, and require fewer supervised synaptic updates. Taken together, these integrative benchmarks and system models are first steps to modeling the complexities of brain processing in an entire domain of intelligence.
Encoding and perceiving the texture of sounds: auditory midbrain codes for recognizing and categorizing auditory texture and for listening in noise
Natural soundscapes such as from a forest, a busy restaurant, or a busy intersection are generally composed of a cacophony of sounds that the brain needs to interpret either independently or collectively. In certain instances sounds - such as from moving cars, sirens, and people talking - are perceived in unison and are recognized collectively as single sound (e.g., city noise). In other instances, such as for the cocktail party problem, multiple sounds compete for attention so that the surrounding background noise (e.g., speech babble) interferes with the perception of a single sound source (e.g., a single talker). I will describe results from my lab on the perception and neural representation of auditory textures. Textures, such as a from a babbling brook, restaurant noise, or speech babble are stationary sounds consisting of multiple independent sound sources that can be quantitatively defined by summary statistics of an auditory model (McDermott & Simoncelli 2011). How and where in the auditory system are summary statistics represented and the neural codes that potentially contribute towards their perception, however, are largely unknown. Using high-density multi-channel recordings from the auditory midbrain of unanesthetized rabbits and complementary perceptual studies on human listeners, I will first describe neural and perceptual strategies for encoding and perceiving auditory textures. I will demonstrate how distinct statistics of sounds, including the sound spectrum and high-order statistics related to the temporal and spectral correlation structure of sounds, contribute to texture perception and are reflected in neural activity. Using decoding methods I will then demonstrate how various low and high-order neural response statistics can differentially contribute towards a variety of auditory tasks including texture recognition, discrimination, and categorization. Finally, I will show examples from our recent studies on how high-order sound statistics and accompanying neural activity underlie difficulties for recognizing speech in background noise.
Categories, language, and visual working memory: how verbal labels change capacity limitations
The limited capacity of visual working memory constrains the quantity and quality of the information we can store in mind for ongoing processing. Research from our lab has demonstrated that verbal labeling/categorization of visual inputs increases its retention and fidelity in visual working memory. In this talk, I will outline the hypotheses that explain the interaction between visual and verbal inputs in working memory, leading to the boosts we observed. I will further show how manipulations of the categorical distinctiveness of the labels, the timing of their occurrence, to which item labels are applied, as well as their validity modulate the benefits one can draw from combining visual and verbal inputs to alleviate capacity limitations. Finally, I will discuss the implications of these results to our understanding of working memory and its interaction with prior knowledge.
The neuroscience of color and what makes primates special
Among mammals, excellent color vision has evolved only in certain non-human primates. And yet, color is often assumed to be just a low-level stimulus feature with a modest role in encoding and recognizing objects. The rationale for this dogma is compelling: object recognition is excellent in grayscale images (consider black-and-white movies, where faces, places, objects, and story are readily apparent). In my talk I will discuss experiments in which we used color as a tool to uncover an organizational plan in inferior temporal cortex (parallel, multistage processing for places, faces, colors, and objects) and a visual-stimulus functional representation in prefrontal cortex (PFC). The discovery of an extensive network of color-biased domains within IT and PFC, regions implicated in high-level object vision and executive functions, compels a re-evaluation of the role of color in behavior. I will discuss behavioral studies prompted by the neurobiology that uncover a universal principle for color categorization across languages, the first systematic study of the color statistics of objects and a chromatic mechanism by which the brain may compute animacy, and a surprising paradoxical impact of memory on face color. Taken together, my talk will put forward the argument that color is not primarily for object recognition, but rather for the assessment of the likely behavioral relevance, or meaning, of the stuff we see.
A computational explanation for domain specificity in the human brain
Many regions of the human brain conduct highly specific functions, such as recognizing faces, understanding language, and thinking about other people’s thoughts. Why might this domain specific organization be a good design strategy for brains, and what is the origin of domain specificity in the first place? In this talk, I will present recent work testing whether the segregation of face and object perception in human brains emerges naturally from an optimization for both tasks. We trained artificial neural networks on face and object recognition, and found that networks were able to perform both tasks well by spontaneously segregating them into distinct pathways. Critically, networks neither had prior knowledge nor any inductive bias about the tasks. Furthermore, networks optimized on tasks which apparently do not develop specialization in the human brain, such as food or cars, and object categorization showed less task segregation. These results suggest that functional segregation can spontaneously emerge without a task-specific bias, and that the domain-specific organization of the cortex may reflect a computational optimization for the real-world tasks humans solve.
Vision at a glance: The role of attention in object and scene categorization
Natural sound characteristics explain perceptual categorization
COSYNE 2022
Natural sound characteristics explain perceptual categorization
COSYNE 2022
Approximate inference through active computation accounts for human categorization behavior
COSYNE 2023
Distinct neural patterns during categorization learning reflect a switch between strategies
FENS Forum 2024
Neural correlates of categorization in hippocampus CA1
FENS Forum 2024
Using retinotopic mapping in convolutional neural networks for object categorization leads to saliency-based visual object localization
FENS Forum 2024