Cellular Mechanisms
cellular mechanisms
Professor Geoffrey J Goodhill
The Department of Neuroscience at Washington University School of Medicine is seeking a tenure-track investigator at the level of Assistant Professor to develop an innovative research program in Theoretical/Computational Neuroscience. The successful candidate will join a thriving theoretical/computational neuroscience community at Washington University, including the new Center for Theoretical and Computational Neuroscience. In addition, the Department also has world-class research strengths in systems, circuits and behavior, cellular and molecular neuroscience using a variety of animal models including worms, flies, zebrafish, rodents and non-human primates. The Department’s focus on fundamental neuroscience, outstanding research support facilities, and the depth, breadth and collegiality of our culture provide an exceptional environment to launch your independent research program.
Cellular Crosstalk in Brain Development, Evolution and Disease
Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.
Low intensity rTMS: age dependent effects, and mechanisms underlying neural plasticity
Neuroplasticity is essential for the establishment and strengthening of neural circuits. Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical excitability and shows promise in the treatment of some neurological disorders. Low intensity magnetic stimulation (LI-rTMS), which does not directly elicit action potentials in the stimulated neurons, have also shown some therapeutic effects, and it is important to determine the biological mechanisms underlying the effects of these low intensity magnetic fields, such as would occur in the regions surrounding the central high-intensity focus of rTMS. Our team has used a focal low-intensity (10mT) magnetic stimulation approach to address some of these questions and to identify cellular mechanisms. I will present several studies from our laboratory, addressing (1) effects of LIrTMS on neuronal activity and excitability ; and (2) neuronal morphology and post-lesion repair. The ensemble of our results indicate that the effects of LI-rTMS depend upon the stimulation pattern, the age of the animal, and the presence of cellular magnetoreceptors.
Cellular crosstalk in Neurodevelopmental Disorders
Cellular crosstalk is an essential process during brain development and it is influenced by numerous factors, including the morphology of the cells, their adhesion molecules, the local extracellular matrix and the secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the correct development of the human brain. Hence, we combine the in vivo mouse model and the in vitro human-derived neurons, cerebral organoids, and dorso-ventral assembloids in order to better comprehend the molecular and cellular mechanisms involved in ventral progenitors’ proliferation and fate as well as migration and maturation of inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders. We particularly focus on mutations in genes influencing cell-cell contacts, extracellular matrix, and secretion of vesicles and therefore study intrinsic and extrinsic mechanisms contributing to the formation of the brain. Our data reveal an important contribution of cell non-autonomous mechanisms in the development of neurodevelopmental disorders.
How Intermittent Bioenergetic Challenges Enhance Brain and Body Health
Humans and other animals evolved in habitats fraught with a range of environmental challenges to their bodies and brains. Accordingly, cells and organ systems possess adaptive stress-responsive signaling pathways that enable them to not only withstand environmental challenges, but also to prepare for future challenges and function more efficiently. These phylogenetically conserved processes are the foundation of the hormesis principle in which repeated exposures to low to moderate amounts of an environmental challenge improve cellular and organismal fitness. Here I describe cellular and molecular mechanisms by which cells in the brain and body respond to intermittent fasting and exercise in ways that enhance performance and counteract aging and disease processes. Switching back and forth between adaptive stress response (during fasting and exercise) and growth and plasticity (eating, resting, sleeping) modes enhances the performance and resilience of various organ systems. While pharmacological interventions that engage a particular hormetic mechanism are being developed, it seems unlikely that any will prove superior to fasting and exercise.
Dopamine and cellular mechanisms of cognitive control in primate prefrontal cortex
Cellular mechanisms of conscious processing
Recent breakthroughs in neurobiology indicate that time is ripe to understand the cellular-level mechanisms of conscious experience. Accordingly, we have recently proposed that conscious processing depends on the integration between top-down and bottom-up information streams and that there exists a specific cellular mechanism that gates this integration. I will first describe this cellular mechanism and demonstrate how it controls signal propagation within the thalamocortical system. Then I will show how this cellular-level mechanism provides a natural explanation for why conscious experience is modulated by top-down processing. Besides shining new light on the neural basis of consciousness, this perspective unravels the mechanisms of internally generated perception, such as dreams, imagery, and hallucinations.
Molecular and cellular mechanisms controlling neural stem cell activity
Neural stem cells (NSCs) generate new neurons throughout life. We use imaging-, genome editing-, and transgenesis-based approaches as well as cellular models of human diseases using pluripotent embryonic cells to study the molecular and cellular framework of NSC biology in the developing and adult brain. Aim of our research is to understand how physiologic and disease-associated alterations of neurogenesis are translated into stem cell-associated plastic changes in the developing and adult brain on a molecular, cellular, and behavioral level.
Adaptive bottleneck to pallium for sequence memory, path integration and mixed selectivity representation
Spike-driven adaptation involves intracellular mechanisms that are initiated by neural firing and lead to the subsequent reduction of spiking rate followed by a recovery back to baseline. We report on long (>0.5 second) recovery times from adaptation in a thalamic-like structure in weakly electric fish. This adaptation process is shown via modeling and experiment to encode in a spatially invariant manner the time intervals between event encounters, e.g. with landmarks as the animal learns the location of food. These cells also come in two varieties, ones that care only about the time since the last encounter, and others that care about the history of encounters. We discuss how the two populations can share in the task of representing sequences of events, supporting path integration and converting from ego-to-allocentric representations. The heterogeneity of the population parameters enables the representation and Bayesian decoding of time sequences of events which may be put to good use in path integration and hilus neuron function in hippocampus. Finally we discuss how all the cells of this gateway to the pallium exhibit mixed selectivity of social features of their environment. The data and computational modeling further reveal that, in contrast to a long-held belief, these gymnotiform fish are endowed with a corollary discharge, albeit only for social signalling.
Adaptation-driven sensory detection and sequence memory
Spike-driven adaptation involves intracellular mechanisms that are initiated by spiking and lead to the subsequent reduction of spiking rate. One of its consequences is the temporal patterning of spike trains, as it imparts serial correlations between interspike intervals in baseline activity. Surprisingly the hidden adaptation states that lead to these correlations themselves exhibit quasi-independence. This talk will first discuss recent findings about the role of such adaptation in suppressing noise and extending sensory detection to weak stimuli that leave the firing rate unchanged. Further, a matching of the post-synaptic responses to the pre-synaptic adaptation time scale enables a recovery of the quasi-independence property, and can explain observations of correlations between post-synaptic EPSPs and behavioural detection thresholds. We then consider the involvement of spike-driven adaptation in the representation of intervals between sensory events. We discuss the possible link of this time-stamping mechanism to the conversion of egocentric to allocentric coordinates. The heterogeneity of the population parameters enables the representation and Bayesian decoding of time sequences of events which may be put to good use in path integration and hilus neuron function in hippocampus.
Mechanistic insights from a mouse model of HCN1 developmental epileptic encephalopathy
Pathogenic variants in HCN1 are associated with severe developmental and epileptic encephalopathies (DEE). We have engineered the Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse which is a homolog of the de novo HCN1 M305L recurrent pathogenic variant. The mouse recapitulates the phenotypic features of patients including having spontaneous seizures and a learning deficit. In this talk I will present experimental work that probes the molecular and cellular mechanisms underlying hyper-excitability in the mouse model. This will include testing the efficacy of currently available antiepileptic drugs and a novel precision medicine approach. I will also briefly touch on how disease biology can give insights into the biophysical properties of HCN channels.
Tapeworm larvae in the brain: cellular mechanisms of epilepsy in neurocysticercosis
Cerebral infection by the larvae of the cestode, Taenia solium (neurocysticercosis), is thought to be the leading cause of adult-acquired epilepsy worldwide. Despite this, little is known about the cellular mechanisms that underlie seizure development in this condition. In this talk I will present our recent data exploring multiple interactions between cestode larvae, neuroinflammatory processes and network excitability. We find that viable cestode larvae are able to strongly suppress microglial activation and inflammatory cytokine release with consequences for the modulation host neuroinflammatory responses and seizure development in vivo. At the same time, larvae produce and release glutamate, with acute excitatory effects on neuronal circuits. We hope that an improved understanding of epileptogenic mechanisms in neurocysticercosis will one day improve the management of this condition as well as other inflammatory causes of epilepsy.
Cellular mechanisms that control state-dependent modulation of sensory processing and plasticity in the cortex
Cellular mechanisms behind stimulus evoked quenching of variability
A wealth of experimental studies show that the trial-to-trial variability of neuronal activity is quenched during stimulus evoked responses. This fact has helped ground a popular view that the variability of spiking activity can be decomposed into two components. The first is due to irregular spike timing conditioned on the firing rate of a neuron (i.e. a Poisson process), and the second is the trial-to-trial variability of the firing rate itself. Quenching of the variability of the overall response is assumed to be a reflection of a suppression of firing rate variability. Network models have explained this phenomenon through a variety of circuit mechanisms. However, in all cases, from the vantage of a neuron embedded within the network, quenching of its response variability is inherited from its synaptic input. We analyze in vivo whole cell recordings from principal cells in layer (L) 2/3 of mouse visual cortex. While the variability of the membrane potential is quenched upon stimulation, the variability of excitatory and inhibitory currents afferent to the neuron are amplified. This discord complicates the simple inheritance assumption that underpins network models of neuronal variability. We propose and validate an alternative (yet not mutually exclusive) mechanism for the quenching of neuronal variability. We show how an increase in synaptic conductance in the evoked state shunts the transfer of current to the membrane potential, formally decoupling changes in their trial-to-trial variability. The ubiquity of conductance based neuronal transfer combined with the simplicity of our model, provides an appealing framework. In particular, it shows how the dependence of cellular properties upon neuronal state is a critical, yet often ignored, factor. Further, our mechanism does not require a decomposition of variability into spiking and firing rate components, thereby challenging a long held view of neuronal activity.
Cellular mechanisms of conscious perception
Arguably one of the biggest mysteries in neuroscience is how the brain stores long-term memories. The major challenge for investigating the neural circuit underlying memory formation in the neocortex is the distributed nature of the resulting memory trace throughout the cortex. Here, we used a new behavioral paradigm that enabled us to generate memory traces in a specific cortical location and to specifically examine the mechanisms of memory formation in that region. We found that medial-temporal inputs arrive in neocortical layer 1 where the apical dendrites of cortical pyramidal neurons predominate. These dendrites have active properties that make them sensitive to contextual inputs from other areas that also send axons to layer 1 around the cortex. Blocking the influence of these medial-temporal inputs prevented learning and suppressed resulting dendritic activity. We conclude that layer 1 is the locus for hippocampal-dependent memory formation in the neocortex and propose that this process enhances the sensitivity of the tuft dendrites to contextual inputs.
Stress-induced psychiatric disorders: A symphony of molecular and cellular mechanisms
Blurring the boundaries between neuroscience and organismal physiology
Work in my laboratory is based on the assumptions that we do not know yet how all physiological functions are regulated and that mouse genetics by allowing to identify novel inter-organ communications is the most efficient ways to identify novel regulation of physiological functions. We test these two contention through the study of bone which is the organ my lab has studied since its inception. Based on precise cell biological and clinical reasons that will be presented during the seminar we hypothesized that bone should be a regulator of energy metabolism and reproduction and identified a bone-derived hormone termed osteocalcin that is responsible of these regulatory events. The study of this hormone revealed that in addition to its predicted functions it also regulates brain size, hippocampus development, prevents anxiety and depression and favors spatial learning and memory by signaling through a specific receptor we characterized. As will be presented, we elucidated some of the molecular events accounting for the influence of osteocalcin on brain and showed that maternal osteocalcin is the pool of this hormone that affects brain development. Subsequently and looking at all the physiological functions regulated by osteocalcin, i.e., memory, the ability to exercise, glucose metabolism, the regulation of testosterone biosynthesis, we realized that are all need or regulated in the case of danger. In other words it suggested that osteocalcin is an hormone needed to sense and overcome acute danger. Consonant with this hypothesis we next showed this led us to demonstrate that bone via osteocalcin is needed to mount an acute stress response through molecular and cellular mechanisms that will be presented during the seminar. overall, an evolutionary appraisal of bone biology, this body of work and experiments ongoing in the lab concur to suggest 1] the appearance of bone during evolution has changed how physiological functions as diverse as memory, the acute stress response but also exercise and glucose metabolism are regulated and 2] identified bone and osteocalcin as its molecular vector, as an organ needed to sense and response to danger.
Interactions between the microbiome and nervous system during early development
The gut microbiota is emerging as an important modulator of brain function and behavior, as several recent discoveries reveal substantial effects of the microbiome on neurophysiology, neuroimmunity and animal behavior. Despite these findings supporting a “microbiome-gut-brain axis”, the molecular and cellular mechanisms that underlie interactions between the gut microbiota and brain remain poorly understood. To uncover these, the Hsiao laboratory is mining the human microbiota for microbial modulators of host neuroactive molecules, investigating the impact of microbiota-immune system interactions on neurodevelopment and examining the microbiome as an interface between gene-environment interactions in neurological diseases. In particular, our research on effects of the maternal microbiome on offspring development in utero are revealing novel interactions between microbiome-dependent metabolites and fetal thalamocortical axonogenesis. Overall, we aim to dissect biological pathways for communication between the gut microbiota and nervous system, toward understanding fundamental interactions between physiological systems that impact brain and behavior.
Aging Brain Initiative Symposium: Cellular & Molecular Mechanisms of Neurodegeneration
The Aging Brain Initiative is an ambitious interdisciplinary effort by MIT focusing on understanding neurodegeneration and efforts to find hallmarks of aging, both in health and disease. The Initiative is broad, made up of scientists in several areas, including systems neuroscience, cell biology, engineering and computational biology, with core investigators from the Departments of Biology, Brain & Cognitive Sciences, Biological Engineering, and Computer Science & Artificial Intelligence Labs. "The theme of this symposium is Cellular & Molecular Mechanisms of Neurodegeneration.
Following neuronal trajectories
Malformations of the human cerebral cortex represent a major cause of developmental disabilities. To date, animal models carrying mutations of genes so far identified in human patients with brain malformations only partially recapitulate the expected phenotypes and therefore do not provide reliable models to entirely understand the molecular and cellular mechanisms responsible for these disorders. Hence, we combine the in vivo mouse model and the human brain organoids in order to better comprehend the mechanisms involved in the migration of neurons during human development and tackle the causes of neurodevelopmental disorders. Our results show that we can model human brain development and disorders using human brain organoids and contribute to open new avenues to bridge the gap of knowledge between human brain malformations and existing animal models.
Diverse synaptic mechanisms underlie visual signaling in the retina
Our laboratory seeks to understand how neural circuits receive, compute, encode and transmit information. More specifically, we’d like to learn what biophysical and morphological features equip synapses, neurons and networks to perform these tasks. The retina is a model system for the study of neuronal information processing: We can deliver precisely defined physiological stimuli and record responses from many different cell types at various points within the network; in addition, retinal circuitry is particularly well understood, enabling us to interpret more directly the impact of synaptic and cellular mechanisms on circuit function. I will present recent experiments in the lab that exploit these advantages to examine how synapses and neurons within retinal amacrine cell circuits perform specific visual computations.
Cellular mechanisms of dorsal horn neurons shape the functional states of nociceptive circuits
COSYNE 2022
Cellular mechanisms and efficacy of hM4Di-dependent chemogenetic silencing in the developing hippocampus
FENS Forum 2024