Cellular Resolution
cellular resolution
Computational bio-imaging via inverse scattering
Optical imaging is a major research tool in the basic sciences, and is the only imaging modality that routinely enables non-ionized imaging with subcellular spatial resolutions and high imaging speeds. In biological imaging applications, however, optical imaging is limited by tissue scattering to short imaging depths. This prevents large-scale bio-imaging by allowing visualization of only the outer superficial layers of an organism, or specific components isolated from within the organism and prepared in-vitro.
Open-source neurotechnologies for imaging cortex-wide neural activity in behaving animals
Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (+300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.
Dissecting the role of accumbal D1 and D2 medium spiny neurons in information encoding
Nearly all motivated behaviors require the ability to associate outcomes with specific actions and make adaptive decisions about future behavior. The nucleus accumbens (NAc) is integrally involved in these processes. The NAc is a heterogeneous population primarily composed of D1 and D2 medium spiny projection (MSN) neurons that are thought to have opposed roles in behavior, with D1 MSNs promoting reward and D2 MSNs promoting aversion. Here we examined what types of information are encoded by the D1 and D2 MSNs using optogenetics, fiber photometry, and cellular resolution calcium imaging. First, we showed that mice responded for optical self-stimulation of both cell types, suggesting D2-MSN activation is not inherently aversive. Next, we recorded population and single cell activity patterns of D1 and D2 MSNs during reinforcement as well as Pavlovian learning paradigms that allow dissociation of stimulus value, outcome, cue learning, and action. We demonstrated that D1 MSNs respond to the presence and intensity of unconditioned stimuli – regardless of value. Conversely, D2 MSNs responded to the prediction of these outcomes during specific cues. Overall, these results provide foundational evidence for the discrete aspects of information that are encoded within the NAc D1 and D2 MSN populations. These results will significantly enhance our understanding of the involvement of the NAc MSNs in learning and memory as well as how these neurons contribute to the development and maintenance of substance use disorders.
Visualizing the multi-scale complexity of the brain
The brain is complex over multiple length-scales, from many protein molecules forming intricate nano-machines in a synapse to many neurons forming interconnected networks across the brain. Unraveling this multi-scale complexity is fundamental to our understanding of brain function and disease. In this lecture, I will introduce advances in visualizing the complex, multi-scale structures in the brain. Emphasis will be on new imaging techniques, including cryo electron tomography and correlative light-electron microscopy that enabled revealing in situ organization of synaptic molecules, and ultra-high speed volumetric imaging method VISoR developed to map brain-wide circuits at subcellular resolution. I will also discuss challenges and opportunities for interdisciplinary research collaboration to analyze and understand the enormous data generated by these cutting-edge technologies.
Technologies for large scale cortical imaging and electrophysiology
Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We have engineered a suite of technologies to enable easy, robust access to much of the dorsal cortex of mice for optical and electrophysiological recordings. First, I will describe microsurgery robots that can programmed to perform delicate microsurgical procedures such as large bilateral craniotomies across the cortex and skull thinning in a semi-automated fashion. Next, I will describe digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access. These polymer skulls allow mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. We next engineered a widefield, miniaturized, head-mounted fluorescence microscope that is compatible with transparent polymer skull preparations. With a field of view of 8 × 10 mm2 and weighing less than 4 g, the ‘mini-mScope’ can image most of the mouse dorsal cortex with resolutions ranging from 39 to 56 µm. We used the mini-mScope to record mesoscale calcium activity across the dorsal cortex during sensory-evoked stimuli, open field behaviors, social interactions and transitions from wakefulness to sleep.
Fish Feelings: Emotional states in larval zebrafish
I’ll give an overview of internal - or motivational - states in larval zebrafish. Specifically we will focus on the role of the Oxytocin system in regulating the detection of, and behavioral responses to, conspecifics. The appeal here is that Oxytocin has likely conserved roles across all vertebrates, including humans, and that the larval zebrafish allows us to study some of the general principles across the brain but nonetheless at cellular resolution. This allows us to propose mechanistic models of emotional states.
A distinct subcircuit in medial entorhinal cortex mediates learning of interval timing behavior during immobility
Over 60 years of research has established that medial temporal lobe structures, including the hippocampus and entorhinal cortex, are necessary for the formation of episodic memories (i.e. memories of specific personal events that occur in spatial and temporal context). While prior work to establish the neural mechanisms underlying episodic memory has largely focused on questions related spatial context, recently we have begun to investigate how these brain structures could be involved in encoding aspects of temporal context. In particular, we have focused on how medial entorhinal cortex, a structure well known for its role in spatial memory, may also be involved in encoding interval time. To answer this question we have developed an instrumental paradigm for head-fixed mice that requires both immobile interval timing and locomotion-dependent navigation behavior. By combining this behavioral paradigm with large-scale cellular resolution functional imaging and optogenetic-mediated inactivation, our results suggest that MEC is required for learning of interval timing behavior and that interval timing could be mediated through regular, sequential neural activity of a distinct subpopulation of neurons in MEC that encode elapsed time during periods of immobility (Heys and Dombeck, 2018; Heys et al, 2020; Issa et al., 2020). In this talk, I will discuss these findings and discuss our on-going work to investigate the principles underlying the role of medial temporal lobe structures in timing behavior and episodic memory.
Holographic control of neuronal circuits
Genetic targeting of neuronal cells with activity reporters (calcium or voltage indicators) has initiated the paradigmatic transition whereby photons have replaced electrons for reading large-scale brain activities at cellular resolution. This has alleviated the limitations of single cell or extracellular electrophysiological probing, which only give access to the activity of at best a few neurons simultaneously and to population activity of unresolved cellular origin, respectively. In parallel, optogenetics has demonstrated that targeting neuronal cells with photosensitive microbial opsins, enables the transduction of photons into electrical currents of opposite polarities thus writing, through activation or inhibition, neuronal signals in a non-invasive way. These progresses have in turn stimulated the development of sophisticated optical methods to increase spatial and temporal resolution, light penetration depth and imaging volume. Today, nonlinear microscopy, combined with spatio-temporal wave front shaping, endoscopic probes engineering or multi scan heads design, enable in vivo in depth, simultaneous recording of thousands of cells in mm 3 volumes at single-spike precision and single-cell resolution. Joint progress in opsin engineering, wave front shaping and laser development have provided the methodology, that we named circuits optogenetics, to control single or multiple target activity independently in space and time with single- neuron and single-spike precision, at large depths. Here, we will review the most significant breakthroughs of the past years, which enable reading and writing neuronal activity at the relevant spatiotemporal scale for brain circuits manipulation, with particular emphasis on the most recent advances in circuit optogenetics.
A multimodal approach to investigate human brain mesoscale circuits with cellular and subcellular resolution
FENS Forum 2024
Revealing the geometry of neuronal population dynamics and scaling of neuronal dimensionality using cortex-wide volumetric recording of neuroactivity at cellular resolution
FENS Forum 2024
Three-photon in vivo imaging of neurons and glia in the medial prefrontal cortex at unprecedented depth with sub-cellular resolution
FENS Forum 2024