Central Brain
central brain
What the fly’s eye tells the fly’s brain…and beyond
Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.
Becoming what you smell: adaptive sensing in the olfactory system
I will argue that the circuit architecture of the early olfactory system provides an adaptive, efficient mechanism for compressing the vast space of odor mixtures into the responses of a small number of sensors. In this view, the olfactory sensory repertoire employs a disordered code to compress a high dimensional olfactory space into a low dimensional receptor response space while preserving distance relations between odors. The resulting representation is dynamically adapted to efficiently encode the changing environment of volatile molecules. I will show that this adaptive combinatorial code can be efficiently decoded by systematically eliminating candidate odorants that bind to silent receptors. The resulting algorithm for 'estimation by elimination' can be implemented by a neural network that is remarkably similar to the early olfactory pathway in the brain. Finally, I will discuss how diffuse feedback from the central brain to the bulb, followed by unstructured projections back to the cortex, can produce the convergence and divergence of the cortical representation of odors presented in shared or different contexts. Our theory predicts a relation between the diversity of olfactory receptors and the sparsity of their responses that matches animals from flies to humans. It also predicts specific deficits in olfactory behavior that should result from optogenetic manipulation of the olfactory bulb and cortex, and in some disease states.
Causal coupling between neural activity, metabolism, and behavior across the Drosophila brain
Coordinated activity across networks of neurons is a hallmark of both resting and active behavioral states in many species, including worms, flies, fish, mice and humans. These global patterns alter energy metabolism in the brain over seconds to hours, making oxygen consumption and glucose uptake widely used proxies of neural activity. However, whether changes in neural activity are causally related to changes in metabolic flux in intact circuits on the sub-second timescales associated with behavior, is unclear. Moreover, it is unclear whether differences between rest and action are associated with spatiotemporally structured changes in neuronal energy metabolism at the subcellular level. My work combines two-photon microscopy across the fruit fly brain with sensors that allow simultaneous measurements of neural activity and metabolic flux, across both resting and active behavioral states. It demonstrates that neural activity drives changes in metabolic flux, creating a tight coupling between these signals that can be measured across large-scale brain networks. Further, using local optogenetic perturbation, I show that even transient increases in neural activity result in rapid and persistent increases in cytosolic ATP, suggesting that neuronal metabolism predictively allocates resources to meet the energy demands of future neural activity. Finally, these studies reveal that the initiation of even minimal behavioral movements causes large-scale changes in the pattern of neural activity and energy metabolism, revealing unexpectedly widespread engagement of the central brain.
Extracting heading and goal through structured action
Many flexible behaviors are thought to rely on internal representations of an animal’s spatial relationship to its environment and of the consequences of its actions in that environment. While such representations—e.g. of head direction and value—have been extensively studied, how they are combined to guide behavior is not well understood. I will discuss how we are exploring these questions using a classical visual learning paradigm for the fly. I’ll begin by describing a simple policy that, when tethered to an internal representation of heading, captures structured behavioral variability in this task. I’ll describe how ambiguities in the fly’s visual surroundings affect its perception and, when coupled to this policy, manifest in predictable changes in behavior. Informed by newly-released connectomic data, I’ll then discuss how these computations might be carried out and combined within specific circuits in the fly’s central brain, and how perception and action might interact to shape individual differences in learning performance.
Australian Bogong moths use a true stellar compass for long-distance navigation at night
Each spring, billions of Bogong moths escape hot conditions in different regions of southeast Australia by migrating over 1000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer. At the beginning of autumn the same individuals make a return migration to their breeding grounds to reproduce and die. To steer migration Bogong moths sense the Earth’s magnetic field and correlate its directional information with visual cues. In this presentation, we will show that a critically important visual cue is the distribution of starlight within the austral night sky. By tethering spring and autumn migratory moths in a flight simulator, we found that under natural dorsally-projected night skies, and in a nulled magnetic field (disabling the magnetic sense), moths flew in their seasonally appropriate migratory directions, turning in the opposite direction when the night sky was rotated 180°. Visual interneurons in the moth’s optic lobe and central brain responded vigorously to identical sky rotations. Migrating Bogong moths thus use the starry night sky as a true compass to distinguish geographic cardinal directions, the first invertebrate known to do so. These stellar cues are likely reinforced by the Earth’s magnetic field to create a robust compass mechanism for long-distance nocturnal navigation.