← Back

Circuit Formation

Topic spotlight
TopicWorld Wide

circuit formation

Discover seminars, jobs, and research tagged with circuit formation across World Wide.
8 curated items6 Seminars2 ePosters
Updated about 4 years ago
8 items · circuit formation
8 results
SeminarNeuroscience

Imaging neuronal morphology and activity pattern in developing cerebral cortex layer 4

Hidenobu Mizuno
Kumamoto University, Japan
Oct 26, 2021

Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development. In the mouse somatosensory cortex layer 4, barrels are arranged in one-to-one correspondence to whiskers on the face. Thalamocortical axon termini are clustered in the center of each barrel. The layer 4 spiny stellate neurons are located around the barrel edge, extend their dendrites primarily toward the barrel center, and make synapses with thalamocortical axons corresponding to a single whisker. These organized circuits are established during the first postnatal week through activity-dependent refinement processes. However, activity pattern regulating the circuit formation is still elusive. Using two-photon calcium imaging in living neonatal mice, we found that layer 4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a ''patchwork'' pattern of spontaneous activity corresponding to the barrel map. We also found that disruption of GluN1, an obligatory subunit of the N-methyl-D-aspartate (NMDA) receptor, in a sparse population of layer 4 neurons reduced activity correlation between GluN1 knockout neuron pairs within a barrel. Our results provide evidence for the involvement of layer 4 neuron NMDA receptors in spatial organization of the spontaneous firing activity of layer 4 neurons in the neonatal barrel cortex. In the talk I will introduce our strategy to analyze the role of NMDA receptor-dependent correlated activity in the layer 4 circuit formation.

SeminarNeuroscience

Building the Human Neocortex: Molecular Logic of Neural Circuit Formation and Evolution

Nenad Sestan
Yale School of Medicine
Feb 17, 2021
SeminarNeuroscienceRecording

Playing fast and loose with glutamate builds healthy circuits in the developing cortex

Chris Dulla
Tufts University
Feb 16, 2021

The construction of cortical circuits requires the precise formation of connections between excitatory and inhibitory neurons during early development. Multiple factors, including neurotransmitters, neuronal activity, and neuronal-glial interactions, shape how these critical circuits form. Disruptions of these early processes can disrupt circuit formation, leading to epilepsy and other neurodevelopmental disorders. Here, I will describe our work into understanding how prolonged post-natal astrocyte development in the cortex creates a permissive window for glutamate signaling that provides tonic activation of developing interneurons through Grin2D NMDA receptors. Experimental disruption of this pathway results in hyperexcitable cortical circuits and human mutations in the Grin2D gene, as well as other related molecules that regulate early life glutamate signaling, are associated with devastating epileptic encephalopathies. We will explore fundamental mechanisms linking early life glutamate signaling and later circuit hyperexcitability, with an emphasis on potential therapeutic interventions aimed at reducing epilepsy and other neurological dysfunction.

SeminarNeuroscienceRecording

Cerebral Cortex Connectomics

Moritz Helmstaedter
Max Planck Institute for Brain Research
Jul 2, 2020

Densely mapping neuronal circuits at synaptic resolution is providing unprecedented insight into the formation and structure of the cerebral cortex. I’ll present recent advances and discuss what we can learn about precision, plasticity and possible patterns in mammalian neuronal circuits.

SeminarNeuroscienceRecording

Species-specific mechanisms of the timing of human cortical development

Pierre Vanderhaeghen
VIB KULeuven Center for Brain & Disease Research
Jun 3, 2020

The human brain, in particular the cerebral cortex, has undergone rapid expansion and increased complexity during recent evolution. One striking feature of human corticogenesis is that it is highly protracted in time, from prenatal stages of neurogenesis (taking months instead of days in the mouse), to postnatal stages of neuronal maturation and circuit formation (taking years instead of weeks in the mouse). This prolonged development is thought to contribute in an important fashion to increased cortical size, but also enhanced circuit complexity and plasticity. Here we will discuss how the species-specific temporal patterning of corticogenesis is largely intrinsic to cortical progenitors and neurons, and involves human-specific genes and cell properties that underlie human brain evolution, as well as our selective sensitivity to certain brain diseases.

ePoster

Characterization of ASD-associated FoxP genes in neural circuit formation

Hanna Yeliseyeva, Martin Müller, Esther Stoeckli

FENS Forum 2024

ePoster

In ovo RNAi as an efficient tool to explore molecular mechanisms of neural circuit formation in the cerebellum of chicken embryos

Aikaterini (Katerina) Koutourlou, Martina Schaettin, Esther T. Stoeckli

FENS Forum 2024