Circuit Mapping
circuit mapping
Prof Justus Kebschull
Understanding brain circuit evolution at single-cell resolution using comparative connectomics and transcriptomics A position for a postdoc is available in the Kebschull Lab at the Department of Biomedical Engineering at the Johns Hopkins School of Medicine in Baltimore, MD. We develop and apply cutting edge molecular and neuroanatomical tools to study how primordial circuits expanded in evolution to form the complex brains that exist today. We have a special focus on barcode sequencing-based high-throughput connectomics (BRICseq, MAPseq) and in situ sequencing, which we apply in the cerebellar nuclei and brain-wide in different vertebrates. Recent relevant papers include Kebschull et al. 2020 Science, Huang et al. 2020 Cell, Han et al. 2018 Nature, and Kebschull et al. 2016 Neuron. Our lab is located on the School of Medicine Campus of Johns Hopkins University, surrounded by world-class neuroscience and biomedical engineering labs. We are committed to establishing a first-class, stimulating, diverse, and equitable environment in our new lab to allow you to flourish, achieve your goals, and further your career. Qualified applicants should send a letter describing their current and future research interests, their CV, and names and contact details for three references to kebschull@jhu.edu. More information is available on https://www.kebschull-lab.org/.
Circuit Mechanisms of Remote Memory
Memories of emotionally-salient events are long-lasting, guiding behavior from minutes to years after learning. The prelimbic cortex (PL) is required for fear memory retrieval across time and is densely interconnected with many subcortical and cortical areas involved in recent and remote memory recall, including the temporal association area (TeA). While the behavioral expression of a memory may remain constant over time, the neural activity mediating memory-guided behavior is dynamic. In PL, different neurons underlie recent and remote memory retrieval and remote memory-encoding neurons have preferential functional connectivity with cortical association areas, including TeA. TeA plays a preferential role in remote compared to recent memory retrieval, yet how TeA circuits drive remote memory retrieval remains poorly understood. Here we used a combination of activity-dependent neuronal tagging, viral circuit mapping and miniscope imaging to investigate the role of the PL-TeA circuit in fear memory retrieval across time in mice. We show that PL memory ensembles recruit PL-TeA neurons across time, and that PL-TeA neurons have enhanced encoding of salient cues and behaviors at remote timepoints. This recruitment depends upon ongoing synaptic activity in the learning-activated PL ensemble. Our results reveal a novel circuit encoding remote memory and provide insight into the principles of memory circuit reorganization across time.
Unchanging and changing: hardwired taste circuits and their top-down control
The taste system detects 5 major categories of ethologically relevant stimuli (sweet, bitter, umami, sour and salt) and accordingly elicits acceptance or avoidance responses. While these taste responses are innate, the taste system retains a remarkable flexibility in response to changing external and internal contexts. Taste chemicals are first recognized by dedicated taste receptor cells (TRCs) and then transmitted to the cortex via a multi-station relay. I reasoned that if I could identify taste neural substrates along this pathway, it would provide an entry to decipher how taste signals are encoded to drive innate response and modulated to facilitate adaptive response. Given the innate nature of taste responses, these neural substrates should be genetically identifiable. I therefore exploited single-cell RNA sequencing to isolate molecular markers defining taste qualities in the taste ganglion and the nucleus of the solitary tract (NST) in the brainstem, the two stations transmitting taste signals from TRCs to the brain. How taste information propagates from the ganglion to the brain is highly debated (i.e., does taste information travel in labeled-lines?). Leveraging these genetic handles, I demonstrated one-to-one correspondence between ganglion and NST neurons coding for the same taste. Importantly, inactivating one ‘line’ did not affect responses to any other taste stimuli. These results clearly showed that taste information is transmitted to the brain via labeled lines. But are these labeled lines aptly adapted to the internal state and external environment? I studied the modulation of taste signals by conflicting taste qualities in the concurrence of sweet and bitter to understand how adaptive taste responses emerge from hardwired taste circuits. Using functional imaging, anatomical tracing and circuit mapping, I found that bitter signals suppress sweet signals in the NST via top-down modulation by taste cortex and amygdala of NST taste signals. While the bitter cortical field provides direct feedback onto the NST to amplify incoming bitter signals, it exerts negative feedback via amygdala onto the incoming sweet signal in the NST. By manipulating this feedback circuit, I showed that this top-down control is functionally required for bitter evoked suppression of sweet taste. These results illustrate how the taste system uses dedicated feedback lines to finely regulate innate behavioral responses and may have implications for the context-dependent modulation of hardwired circuits in general.
Dorothy J Killam Lecture: Cell Type Classification and Circuit Mapping in the Mouse Brain
To understand the function of the brain and how its dysfunction leads to brain diseases, it is essential to have a deep understanding of the cell type composition of the brain, how the cell types are connected with each other and what their roles are in circuit function. At the Allen Institute, we have built multiple platforms, including single-cell transcriptomics, single and multi-patching electrophysiology, 3D reconstruction of neuronal morphology, high throughput brain-wide connectivity mapping, and large-scale neuronal activity imaging, to characterize the transcriptomic, physiological, morphological, and connectional properties of different types of neurons in a standardized way, towards a taxonomy of cell types and a description of their wiring diagram for the mouse brain, with a focus on the visual cortico-thalamic system. Building such knowledge base lays the foundation towards the understanding of the computational mechanisms of brain circuit function.
Plasticity in hypothalamic circuits for oxytocin release
Mammalian babies are “sensory traps” for parents. Various sensory cues from the newborn are tremendously efficient in triggering parental responses in caregivers. We recently showed that core aspects of maternal behavior such as pup retrieval in response to infant vocalizations rely on active learning of auditory cues from pups facilitated by the neurohormone oxytocin (OT). Release of OT from the hypothalamus might thus help induce recognition of different infant cues but it is unknown what sensory stimuli can activate OT neurons. I performed unprecedented in vivo whole-cell and cell-attached recordings from optically-identified OT neurons in awake dams. I found that OT neurons, but not other hypothalamic cells, increased their firing rate after playback of pup distress vocalizations. Using anatomical tracing approaches and channelrhodopsin-assisted circuit mapping, I identified the projections and brain areas (including inferior colliculus, auditory cortex, and posterior intralaminar thalamus) relaying auditory information about social sounds to OT neurons. In hypothalamic brain slices, when optogenetically stimulating thalamic afferences to mimic high-frequency thalamic discharge, observed in vivo during pup calls playback, I found that thalamic activity led to long-term depression of synaptic inhibition in OT neurons. This was mediated by postsynaptic NMDARs-induced internalization of GABAARs. Therefore, persistent activation of OT neurons following pup calls in vivo is likely mediated by disinhibition. This gain modulation of OT neurons by infant cries, may be important for sustaining motivation. Using a genetically-encoded OT sensor, I demonstrated that pup calls were efficient in triggering OT release in downstream motivational areas. When thalamus projections to hypothalamus were inhibited with chemogenetics, dams exhibited longer latencies to retrieve crying pups, suggesting that the thalamus-hypothalamus noncanonical auditory pathway may be a specific circuit for the detection of social sounds, important for disinhibiting OT neurons, gating OT release in downstream brain areas, and speeding up maternal behavior.