Clinical Studies
clinical studies
Influence of the context of administration in the antidepressant-like effects of the psychedelic 5-MeO-DMT
Psychedelics like psilocybin have shown rapid and long-lasting efficacy on depressive and anxiety symptoms. Other psychedelics with shorter half-lives, such as DMT and 5-MeO-DMT, have also shown promising preliminary outcomes in major depression, making them interesting candidates for clinical practice. Despite several promising clinical studies, the influence of the context on therapeutic responses or adverse effects remains poorly documented. To address this, we conducted preclinical studies evaluating the psychopharmacological profile of 5-MeO-DMT in contexts previously validated in mice as either pleasant (positive setting) or aversive (negative setting). Healthy C57BL/6J male mice received a single intraperitoneal (i.p.) injection of 5-MeO-DMT at doses of 0.5, 5, and 10 mg/kg, with assessments at 2 hours, 24 hours, and one week post-administration. In a corticosterone (CORT) mouse model of depression, 5-MeO-DMT was administered in different settings, and behavioral tests mimicking core symptoms of depression and anxiety were conducted. In CORT-exposed mice, an acute dose of 0.5 mg/kg administered in a neutral setting produced antidepressant-like effects at 24 hours, as observed by reduced immobility time in the Tail Suspension Test (TST). In a positive setting, the drug also reduced latency to first immobility and total immobility time in the TST. However, these beneficial effects were negated in a negative setting, where 5-MeO-DMT failed to produce antidepressant-like effects and instead elicited an anxiogenic response in the Elevated Plus Maze (EPM).Our results indicate a strong influence of setting on the psychopharmacological profile of 5-MeO-DMT. Future experiments will examine cortical markers of pre- and post-synaptic density to correlate neuroplasticity changes with the behavioral effects of 5-MeO-DMT in different settings.
Blood-brain barrier dysfunction in epilepsy: Time for translation
The neurovascular unit (NVU) consists of cerebral blood vessels, neurons, astrocytes, microglia, and pericytes. It plays a vital role in regulating blood flow and ensuring the proper functioning of neural circuits. Among other, this is made possible by the blood-brain barrier (BBB), which acts as both a physical and functional barrier. Previous studies have shown that dysfunction of the BBB is common in most neurological disorders and is associated with neural dysfunction. Our studies have demonstrated that BBB dysfunction results in the transformation of astrocytes through transforming growth factor beta (TGFβ) signaling. This leads to activation of the innate neuroinflammatory system, changes in the extracellular matrix, and pathological plasticity. These changes ultimately result in dysfunction of the cortical circuit, lower seizure threshold, and spontaneous seizures. Blocking TGFβ signaling and its associated pro-inflammatory pathway can prevent this cascade of events, reduces neuroinflammation, repairs BBB dysfunction, and prevents post-injury epilepsy, as shown in experimental rodents. To further understand and assess BBB integrity in human epilepsy, we developed a novel imaging technique that quantitatively measures BBB permeability. Our findings have confirmed that BBB dysfunction is common in patients with drug-resistant epilepsy and can assist in identifying the ictal-onset zone prior to surgery. Current clinical studies are ongoing to explore the potential of targeting BBB dysfunction as a novel treatment approach and investigate its role in drug resistance, the spread of seizures, and comorbidities associated with epilepsy.
Quasicriticality and the quest for a framework of neuronal dynamics
Critical phenomena abound in nature, from forest fires and earthquakes to avalanches in sand and neuronal activity. Since the 2003 publication by Beggs & Plenz on neuronal avalanches, a growing body of work suggests that the brain homeostatically regulates itself to operate near a critical point where information processing is optimal. At this critical point, incoming activity is neither amplified (supercritical) nor damped (subcritical), but approximately preserved as it passes through neural networks. Departures from the critical point have been associated with conditions of poor neurological health like epilepsy, Alzheimer's disease, and depression. One complication that arises from this picture is that the critical point assumes no external input. But, biological neural networks are constantly bombarded by external input. How is then the brain able to homeostatically adapt near the critical point? We’ll see that the theory of quasicriticality, an organizing principle for brain dynamics, can account for this paradoxical situation. As external stimuli drive the cortex, quasicriticality predicts a departure from criticality while maintaining optimal properties for information transmission. We’ll see that simulations and experimental data confirm these predictions and describe new ones that could be tested soon. More importantly, we will see how this organizing principle could help in the search for biomarkers that could soon be tested in clinical studies.
Astroglial modulation of the antidepressant action of deep brain and bright light stimulation
Even if major depression is now the most common of psychiatric disorders, successful antidepressant treatments are still difficult to achieve. Therefore, a better understanding of the mechanisms of action of current antidepressant treatments is needed to ultimately identify new targets and enhance beneficial effects. Given the intimate relationships between astrocytes and neurons at synapses and the ability of astrocytes to "sense" neuronal communication and release gliotransmitters, an attractive hypothesis is emerging stating that the effects of antidepressants on brain function could be, at least in part, modulated by direct influences of astrocytes on neuronal networks. We will present two preclinical studies revealing a permissive role of glia in the antidepressant response: i) Control of the antidepressant-like effects of rat prefrontal cortex Deep Brain Stimulation (DBS) by astroglia, ii) Modulation of antidepressant efficacy of Bright Light Stimulation (BLS) by lateral habenula astroglia. Therefore, it is proposed that an unaltered neuronal-glial system constitutes a major prerequisite to optimize antidepressant efficacy of DBS or BLS. Collectively, these results pave also the way to the development of safer and more effective antidepressant strategies.
Deception, ExoNETs, SmushWare & Organic Data: Tech-facilitated neurorehabilitation & human-machine training
Making use of visual display technology and human-robotic interfaces, many researchers have illustrated various opportunities to distort visual and physical realities. We have had success with interventions such as error augmentation, sensory crossover, and negative viscosity. Judicial application of these techniques leads to training situations that enhance the learning process and can restore movement ability after neural injury. I will trace out clinical studies that have employed such technologies to improve the health and function, as well as share some leading-edge insights that include deceiving the patient, moving the "smarts" of software into the hardware, and examining clinical effectiveness
Brain chart for the human lifespan
Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight. Here, we built an interactive resource to benchmark brain morphology, www.brainchart.io, derived from any current or future sample of magnetic resonance imaging (MRI) data. With the goal of basing these reference charts on the largest and most inclusive dataset available, we aggregated 123,984 MRI scans from 101,457 participants aged from 115 days post-conception through 100 postnatal years, across more than 100 primary research studies. Cerebrum tissue volumes and other global or regional MRI metrics were quantified by centile scores, relative to non-linear trajectories of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones; showed high stability of individual centile scores over longitudinal assessments; and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared to non-centiled MRI phenotypes, and provided a standardised measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In sum, brain charts are an essential first step towards robust quantification of individual deviations from normative trajectories in multiple, commonly-used neuroimaging phenotypes. Our collaborative study proves the principle that brain charts are achievable on a global scale over the entire lifespan, and applicable to analysis of diverse developmental and clinical effects on human brain structure.
Role of the gut microbiota in the development of alcohol use disorder
The gut microbiota is composed of a very large number of bacteria, viruses, fungi and yeasts that play an important role in the body, through the production of a series of metabolites (including neurotransmitters), and through an essential role in the barrier function of the gut and the regulation of immunity and stress response. In this lecture I will present, based mainly on human studies but also on preclinical studies, the evidence for a role of the gut microbiota in the development of alcohol use disorder. I will show the first results of trials to test the effects of nutritional approaches to address these deficits.
LONG-ACTING ANTIPSYCHOTICS: OPTION DOWN THE ROCKY ROAD, NICE TO HAVE OR ESSENTIAL CHOICE?
Time and again we are faced with the question at what point in the treatment of schizophrenia a depot formulation should be used. The data on the so-called LAIs (Long-Acting Injectables) has steadily increased in recent years. Today, we have very good evidence for the early use of depot therapies. However, the willingness and consent of the patient for this form of pharmacotherapy remains central to the successful use of LAIs. In his lecture, Prof. Correll will talk about the current evidence for the use of LAIs summarizing the latest studies.
The BHP Chronic Pain Health Integration Team: Helping those with chronic pain to access the support they need / A bit of a To and Fro with population pain science
Candy will provide an overview of Bristol Health Partners' Chronic Pain Health Integration Team which brings together clinicians, academics, patients and carers to focus on improving the lives of those with chronic pain and supporting those who provide chronic pain services or care. Tony will describe recent and ongoing studies that have been forward and reverse translating pain neuroscience from animal to human including functional imaging in patients, microneurography, industrial partnerships and trials of novel preventative approaches that are benefitting from the people, expertise and facilities available in Bristol and GW4.
Social deprivation, coping and drugs: a bad cocktail in the COVID-19 era: evidence from preclinical studies
The factors that underlie an individual’s vulnerability to switch from controlled, recreational drug use to addiction are not well understood. I will discuss the evidence in rats that in individuals housed in enriched conditions, the experience of drugs in the relative social and sensory impoverishment of the drug taking context, and the associated change in behavioural traits of resilience to addiction, exacerbate the vulnerability to develop compulsive drug intake. I will further discuss the importance of the acquisition of alcohol drinking as a mechanism to cope with distress as a factor of exacerbated vulnerability to develop compulsive alcohol intake. Together these results demonstrate that experiential factors in the drug taking context, which can be substantially driven by social isolation, shape the vulnerability to addiction.