← Back

Collaborative Research

Topic spotlight
TopicWorld Wide

collaborative research

Discover seminars, jobs, and research tagged with collaborative research across World Wide.
4 curated items3 Seminars1 Position
Updated 1 day ago
4 items · collaborative research
4 results
SeminarMachine LearningRecording

AI UPtake: Panel discussion on collaborative research

University of Pretoria
Nov 11, 2021

Artificial intelligence (AI) and machine learning (ML) can facilitate new paradigms and solutions in almost every research field. Collaboration is essential to achieve tangible and concrete progress in impactful and meaningful AI and ML research, due to its transdisciplinary nature. Come and meet University of Pretoria (UP) academics that are embracing and exploring the opportunities that AI and ML offer to transcend the conventional boundaries of their disciplines. Join the discussion to debate this new frontier of opportunities and challenges that may enable you to look beyond the obvious, and discover new directions and opportunities that we may offer for tomorrow — together!

SeminarNeuroscienceRecording

Learning the structure and investigating the geometry of complex networks

Robert Peach and Alexis Arnaudon
Imperial College
Sep 23, 2021

Networks are widely used as mathematical models of complex systems across many scientific disciplines, and in particular within neuroscience. In this talk, we introduce two aspects of our collaborative research: (1) machine learning and networks, and (2) graph dimensionality. Machine learning and networks. Decades of work have produced a vast corpus of research characterising the topological, combinatorial, statistical and spectral properties of graphs. Each graph property can be thought of as a feature that captures important (and sometimes overlapping) characteristics of a network. We have developed hcga, a framework for highly comparative analysis of graph data sets that computes several thousands of graph features from any given network. Taking inspiration from hctsa, hcga offers a suite of statistical learning and data analysis tools for automated identification and selection of important and interpretable features underpinning the characterisation of graph data sets. We show that hcga outperforms other methodologies (including deep learning) on supervised classification tasks on benchmark data sets whilst retaining the interpretability of network features, which we exemplify on a dataset of neuronal morphologies images. Graph dimensionality. Dimension is a fundamental property of objects and the space in which they are embedded. Yet ideal notions of dimension, as in Euclidean spaces, do not always translate to physical spaces, which can be constrained by boundaries and distorted by inhomogeneities, or to intrinsically discrete systems such as networks. Deviating from approaches based on fractals, here, we present a new framework to define intrinsic notions of dimension on networks, the relative, local and global dimension. We showcase our method on various physical systems.

SeminarPsychology

A Manifesto for Big Team Science

Patrick S Forscher
Université Grenoble Alpes
Mar 10, 2021

Progress in psychology has been frustrated by challenges concerning replicability, generalizability, strategy selection, inferential reproducibility, and computational reproducibility. Although often discussed separately, I argue that these five challenges share a common cause: insufficient investment of resources into the typical psychology study. I further suggest that big team science can help address these challenges by allowing researchers to pool their resources to efficiently and drastically increase the amount of resources available for a single study. However, the current incentives, infrastructure, and institutions in academic science have all developed under the assumption that science is conducted by solo Principal Investigators and their dependent trainees. These barriers must be overcome if big team science is to be sustainable. Big team science likely also carries unique risks, such as the potential for big team science institutions to monopolize power, become overly conservative, make mistakes at a grand scale, or fail entirely due to mismanagement and a lack of financial sustainability. I illustrate the promise, barriers, and risks of big team science with the experiences of the Psychological Science Accelerator, a global research network of over 1400 members from 70+ countries.