← Back

Competition

Topic spotlight
TopicWorld Wide

competition

Discover seminars, jobs, and research tagged with competition across World Wide.
33 curated items25 Seminars6 ePosters2 Positions
Updated 1 day ago
33 items · competition
33 results
Position

Dominik R Bach

University of Bonn
Bonn, Germany
Dec 5, 2025

We are looking to hire a highly motivated and driven postdoctoral researcher to understand human cooperation & competition using virtual reality. This ambitious project combines concepts from behavioural game theory and theory of mind in an existing VR setup, and is supported by a dedicated VR developer. The goal of the position is to understand human cooperation in dangerous situations. The role includes conceptual design of classical game-theoretic dilemmata in naturalistic VR scenarios with experimentally controlled non-verbal information channels, conducting and analysing experiments using motion capture data and an established R package (https://github.com/bachlab/vrthreat), and publication of research and development results.

SeminarNeuroscience

Learning and Memory

Nicolas Brunel, Ashok Litwin-Kumar, Julijana Gjeorgieva
Duke University; Columbia University; Technical University Munich
Nov 28, 2024

This webinar on learning and memory features three experts—Nicolas Brunel, Ashok Litwin-Kumar, and Julijana Gjorgieva—who present theoretical and computational approaches to understanding how neural circuits acquire and store information across different scales. Brunel discusses calcium-based plasticity and how standard “Hebbian-like” plasticity rules inferred from in vitro or in vivo datasets constrain synaptic dynamics, aligning with classical observations (e.g., STDP) and explaining how synaptic connectivity shapes memory. Litwin-Kumar explores insights from the fruit fly connectome, emphasizing how the mushroom body—a key site for associative learning—implements a high-dimensional, random representation of sensory features. Convergent dopaminergic inputs gate plasticity, reflecting a high-dimensional “critic” that refines behavior. Feedback loops within the mushroom body further reveal sophisticated interactions between learning signals and action selection. Gjorgieva examines how activity-dependent plasticity rules shape circuitry from the subcellular (e.g., synaptic clustering on dendrites) to the cortical network level. She demonstrates how spontaneous activity during development, Hebbian competition, and inhibitory-excitatory balance collectively establish connectivity motifs responsible for key computations such as response normalization.

SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 14, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscience

Algonauts 2023 winning paper journal club (fMRI encoding models)

Huzheng Yang, Paul Scotti
Aug 17, 2023

Algonauts 2023 was a challenge to create the best model that predicts fMRI brain activity given a seen image. Huze team dominated the competition and released a preprint detailing their process. This journal club meeting will involve open discussion of the paper with Q/A with Huze. Paper: https://arxiv.org/pdf/2308.01175.pdf Related paper also from Huze that we can discuss: https://arxiv.org/pdf/2307.14021.pdf

SeminarNeuroscienceRecording

The neural basis of flexible semantic cognition (BACN Mid-career Prize Lecture 2022)

Elizabeth Jefferies
Department of Psychology, University of York, UK
May 24, 2022

Semantic cognition brings meaning to our world – it allows us to make sense of what we see and hear, and to produce adaptive thoughts and behaviour. Since we have a wealth of information about any given concept, our store of knowledge is not sufficient for successful semantic cognition; we also need mechanisms that can steer the information that we retrieve so it suits the context or our current goals. This talk traces the neural networks that underpin this flexibility in semantic cognition. It draws on evidence from multiple methods (neuropsychology, neuroimaging, neural stimulation) to show that two interacting heteromodal networks underpin different aspects of flexibility. Regions including anterior temporal cortex and left angular gyrus respond more strongly when semantic retrieval follows highly-related concepts or multiple convergent cues; the multivariate responses in these regions correspond to context-dependent aspects of meaning. A second network centred on left inferior frontal gyrus and left posterior middle temporal gyrus is associated with controlled semantic retrieval, responding more strongly when weak associations are required or there is more competition between concepts. This semantic control network is linked to creativity and also captures context-dependent aspects of meaning; however, this network specifically shows more similar multivariate responses across trials when association strength is weak, reflecting a common controlled retrieval state when more unusual associations are the focus. Evidence from neuropsychology, fMRI and TMS suggests that this semantic control network is distinct from multiple-demand cortex which supports executive control across domains, although challenging semantic tasks recruit both networks. The semantic control network is juxtaposed between regions of default mode network that might be sufficient for the retrieval of strong semantic relationships and multiple-demand regions in the left hemisphere, suggesting that the large-scale organisation of flexible semantic cognition can be understood in terms of cortical gradients that capture systematic functional transitions that are repeated in temporal, parietal and frontal cortex.

SeminarNeuroscience

NeurotechEU Summit

Ms Vanessa Debiais Sainton, Prof. Staffan Holmin, Dr Mohsen Kaboli and Prof. Peter Hagoort
European Commission, Karolinska Institutet, BMW Group, Max Planck Institute for Psycholinguistics and Donders Institute
Nov 21, 2021

Our first NeurotechEU Summit will be fully digital and will take place on November 22th from 09:00 to 17:00 (CET). The final programme can be downloaded here. Hosted by the Karolinska Institutet, the summit will provide you an overview of our actions and achievements from the last year and introduce the priorities for the next year. You will also have the opportunity to attend the finals of the 3 minute thesis competition (3MT) organized by the Synapses Student Society, the student charter of NeurotechEU. Good luck to all the finalists: Lynn Le, Robin Noordhof, Adriana Gea González, Juan Carranza Valencia, Lea van Husen, Guoming (Tony) Man, Lilly Pitshaporn Leelaarporn, Cemre Su, Kaya Keleş, Ramazan Tarık Türksoy, Cristiana Tisca, Sara Bandiera, Irina Maria Vlad, Iulia Vadan, Borbála László, and David Papp! Don’t miss our keynote lecture, success stories and interactive discussions with Ms Vanessa Debiais Sainton (Head of Higher Education Unit, European Commission), Prof. Staffan Holmin (Karolinska Institutet), Dr Mohsen Kaboli (BMW Group, member of the NeurotechEU Associates Advisory Committee), and Prof. Peter Hagoort (Max Planck Institute for Psycholinguistics, Donders Institute). Would you like to use this opportunity to network? Please join our informal breakout sessions on Wonder.me at 11:40 CET. You will be able to move from one discussion group to another within 3 sessions: NeurotechEU ecosystem - The Associates Advisory Committee: Synergies in cross-sectoral initiatives Education next: Trans-European education and the European Universities Initiatives - Lessons learned thus far. Equality, diversity and inclusion at NeurotechEU: removing access barriers to education and developing a working, learning, and social environment where everyone is respected and valued. You can register for this free event at www.crowdcast.io/e/neurotecheu-summit

SeminarNeuroscience

Representation transfer and signal denoising through topographic modularity

Barna Zajzon
Morrison lab, Forschungszentrum Jülich, Germany
Nov 3, 2021

To prevail in a dynamic and noisy environment, the brain must create reliable and meaningful representations from sensory inputs that are often ambiguous or corrupt. Since only information that permeates the cortical hierarchy can influence sensory perception and decision-making, it is critical that noisy external stimuli are encoded and propagated through different processing stages with minimal signal degradation. Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the structural scaffold for such signal routing. We investigate whether the feature-specific pathways within such maps, characterized by the preservation of the relative organization of cells between distinct populations, can guide and route stimulus information throughout the system while retaining representational fidelity. We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks, topographic projections are not only necessary for accurate propagation of stimulus representations, but can also help the system reduce sensory and intrinsic noise. Moreover, by regulating the effective connectivity and local E/I balance, modular topographic precision enables the system to gradually improve its internal representations and increase signal-to-noise ratio as the input signal passes through the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-forward projections, and is characterized by the emergence of inhibition-dominated regimes where population responses along stimulated maps are amplified and others are weakened. Our results indicate that this is a generalizable and robust structural effect, largely independent of the underlying model specificities. Using mean-field approximations, we gain deeper insight into the mechanisms responsible for the qualitative changes in the system’s behavior and show that these depend only on the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of topographic maps, and may lead to a wide range of behaviorally relevant regimes observed under various experimental conditions: maintaining stable representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others (winner-take-all circuits); and endow circuits with metastable dynamics (winnerless competition), assumed to be fundamental in a variety of tasks.

SeminarNeuroscienceRecording

3 Minutes Thesis Competition: Pre-selection event

NeurotechEU
NeurotechEU
Oct 22, 2021

On behalf of NeurotechEU, we are pleased to invite you to participate in the Summit 2021 pre-selection event on October 23, 2021. The event will be held online via the Platform Crowdcast.io, and it is going to be organized by NeurotechEU-The European University of Brain and Technology. Students from all over NeurotechEU have the chance to present their research (bachelor’s thesis, Master’s thesis, PhD, post-doc…) following the methodology of three minutes thesis (3MT from the University of Queensland): https://threeminutethesis.uq.edu.au/resources/3mt-competitor-guide. There will be one session per university and at the end of it, two semi-finalists will be selected from each university. They will compete in the Summit 2021 on November 22nd. There will be prizes for the winners who will be selected by voting of the audience.

SeminarNeuroscienceRecording

Do you hear what I see: Auditory motion processing in blind individuals

Ione Fine
University of Washington
Oct 6, 2021

Perception of object motion is fundamentally multisensory, yet little is known about similarities and differences in the computations that give rise to our experience across senses. Insight can be provided by examining auditory motion processing in early blind individuals. In those who become blind early in life, the ‘visual’ motion area hMT+ responds to auditory motion. Meanwhile, the planum temporale, associated with auditory motion in sighted individuals, shows reduced selectivity for auditory motion, suggesting competition between cortical areas for functional role. According to the metamodal hypothesis of cross-modal plasticity developed by Pascual-Leone, the recruitment of hMT+ is driven by it being a metamodal structure containing “operators that execute a given function or computation regardless of sensory input modality”. Thus, the metamodal hypothesis predicts that the computations underlying auditory motion processing in early blind individuals should be analogous to visual motion processing in sighted individuals - relying on non-separable spatiotemporal filters. Inconsistent with the metamodal hypothesis, evidence suggests that the computational algorithms underlying auditory motion processing in early blind individuals fail to undergo a qualitative shift as a result of cross-modal plasticity. Auditory motion filters, in both blind and sighted subjects, are separable in space and time, suggesting that the recruitment of hMT+ to extract motion information from auditory input includes a significant modification of its normal computational operations.

SeminarPsychology

Beyond visual search: studying visual attention with multitarget visual foraging tasks

Jérôme Tagu
University of Bordeaux
Apr 21, 2021

Visual attention refers to a set of processes allowing selection of relevant and filtering out of irrelevant information in the visual environment. A large amount of research on visual attention has involved visual search paradigms, where observers are asked to report whether a single target is present or absent. However, recent studies have revealed that these classic single-target visual search tasks only provide a snapshot of how attention is allocated in the visual environment, and that multitarget visual foraging tasks may capture the dynamics visual attention more accurately. In visual foraging, observers are asked to select multiple instances of multiple target types, as fast as they can. A critical question in foraging research concerns the factors driving the next target selection. Most likely, this would require two steps: (1) identifying a set of candidates for the next selection, and (2) selecting the best option among these candidates. After having briefly described the advantage of visual foraging over visual search, I will review recent visual foraging studies testing the influence of several manipulations (e.g., target crypticity, number of items, selection modality) on foraging behaviour. Overall, these studies revealed that the next target selection during visual foraging is determined by the competition between three factors: target value, target proximity, and priming of features. I will explain how the analysis of individual differences in foraging behaviour can provide important information, with the idea that individuals show by-default internal biases toward value, proximity and priming that determine their search strategy and behaviour.

SeminarNeuroscienceRecording

What is Foraging?

Alex Kacelnik
University of Oxford
Mar 15, 2021

Foraging research aims at describing, understanding, and predicting resource-gathering behaviour. Optimal Foraging Theory (OFT) is a sub-discipline that emphasises that these aims can be aided by segmenting foraging behaviour into discrete problems that can be formally described and examined with mathematical maximization techniques. Examples of such segmentation are found in the isolated treatment of issues such as patch residence time, prey selection, information gathering, risky choice, intertemporal decision making, resource allocation, competition, memory updating, group structure, and so on. Since foragers face these problems simultaneously rather than in isolation, it is unsurprising that OFT models are ‘always wrong but sometimes useful’. I will argue that a progressive optimal foraging research program should have a defined strategy for dealing with predictive failure of models. Further, I will caution against searching for brain structures responsible for solving isolated foraging problems.

SeminarNeuroscience

Brain Awareness Week by IIT Gandhinagar

Raghav Rajan, Anindya Ghosh Roy, Suvarna Alladi
Mar 14, 2021

The Brain Awareness Week by the Centre for Cognitive and Brain Sciences, IIT Gandhinagar spans across 7 days and invites you for a series of talks, panel discussions, competitions and workshops on topics ranging from 'Using songbirds to understand how the brain initiates movements' to 'Cognitive Science and UX in Game Design' by speakers from prestigious Indian and International institutes. Explore the marvels of the brain by joining us on 15th March. Free Registration.

SeminarPhysics of LifeRecording

Mixed active-passive suspensions: from particle entrainment to spontaneous demixing

Marco Polin
University Warwick
Feb 16, 2021

Understanding the properties of active matter is a challenge which is currently driving a rapid growth in soft- and bio-physics. Some of the most important examples of active matter are at the microscale, and include active colloids and suspensions of microorganisms, both as a simple active fluid (single species) and as mixed suspensions of active and passive elements. In this last class of systems, recent experimental and theoretical work has started to provide a window into new phenomena including activity-induced depletion interactions, phase separation, and the possibility to extract net work from active suspensions. Here I will present our work on a paradigmatic example of mixed active-passive system, where the activity is provided by swimming microalgae. Macro- and micro-scopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. Entrainment length can be understood within the framework of Taylor dispersion as a competition between advection by the no-slip surface of the cell body and microparticle diffusion. Building on these results, we then ask how external control of the dynamics of the active component (e.g. induced microswimmer anisotropy/inhomogeneity) can be used to alter the transport of passive cargo. As a first step in this direction, we study the behaviour of mixed active-passive systems in confinement. The resulting spatial inhomogeneity in swimmers’ distribution and orientation has a dramatic effect on the spatial distribution of passive particles, with the colloids accumulating either towards the boundaries or towards the bulk of the sample depending on the size of the container. We show that this can be used to induce the system to de-mix spontaneously.

SeminarNeuroscienceRecording

Global visual salience of competing stimuli

Alex Hernandez-Garcia
Université de Montréal
Dec 9, 2020

Current computational models of visual salience accurately predict the distribution of fixations on isolated visual stimuli. It is not known, however, whether the global salience of a stimulus, that is its effectiveness in the competition for attention with other stimuli, is a function of the local salience or an independent measure. Further, do task and familiarity with the competing images influence eye movements? In this talk, I will present the analysis of a computational model of the global salience of natural images. We trained a machine learning algorithm to learn the direction of the first saccade of participants who freely observed pairs of images. The pairs balanced the combinations of new and already seen images, as well as task and task-free trials. The coefficients of the model provided a reliable measure of the likelihood of each image to attract the first fixation when seen next to another image, that is their global salience. For example, images of close-up faces and images containing humans were consistently looked first and were assigned higher global salience. Interestingly, we found that global salience cannot be explained by the feature-driven local salience of images, the influence of task and familiarity was rather small and we reproduced the previously reported left-sided bias. This computational model of global salience allows to analyse multiple other aspects of human visual perception of competing stimuli. In the talk, I will also present our latest results from analysing the saccadic reaction time as a function of the global salience of the pair of images.

SeminarNeuroscience

Neural mechanisms of aggression

Dayu Lin
NYU
Dec 1, 2020

Aggression is an innate social behavior essential for competing for resources, securing mates, defending territory and protecting the safety of oneself and family. In the last decade, significant progress has been made towards an understanding of the neural circuit underlying aggression using a set of modern neuroscience tools. Here, I will talk about the history and recent progress in the study of aggression.

SeminarNeuroscienceRecording

Dimensions of variability in circuit models of cortex

Brent Doiron
The University of Chicago
Nov 15, 2020

Cortical circuits receive multiple inputs from upstream populations with non-overlapping stimulus tuning preferences. Both the feedforward and recurrent architectures of the receiving cortical layer will reflect this diverse input tuning. We study how population-wide neuronal variability propagates through a hierarchical cortical network receiving multiple, independent, tuned inputs. We present new analysis of in vivo neural data from the primate visual system showing that the number of latent variables (dimension) needed to describe population shared variability is smaller in V4 populations compared to those of its downstream visual area PFC. We successfully reproduce this dimensionality expansion from our V4 to PFC neural data using a multi-layer spiking network with structured, feedforward projections and recurrent assemblies of multiple, tuned neuron populations. We show that tuning-structured connectivity generates attractor dynamics within the recurrent PFC current, where attractor competition is reflected in the high dimensional shared variability across the population. Indeed, restricting the dimensionality analysis to activity from one attractor state recovers the low-dimensional structure inherited from each of our tuned inputs. Our model thus introduces a framework where high-dimensional cortical variability is understood as ``time-sharing’’ between distinct low-dimensional, tuning-specific circuit dynamics.

SeminarPhysics of LifeRecording

Cooperation, competition, and conviction in decision-making for motile cells

Julie Theriot
University of Washington
Aug 14, 2020
ePoster

Competition and integration of sensory signals in a deep reinforcement learning agent

Sandhiya Vijayabaskaran, Sen Cheng

Bernstein Conference 2024

ePoster

The dynamical regime of mouse visual cortex shifts from cooperation to competition with increasing visual input

COSYNE 2022

ePoster

Instinct vs Insight: Neural Competition Between Prefrontal and Auditory Cortex Constrains Sound Strategy Learning

Robert Liu, Kelvin Wong, Chengcheng Yang, Lin Zhou, Yike Shi, Maya Costello, Kai Lu

COSYNE 2025

ePoster

The dynamic nature of memory: Heterosynaptic plasticity and the temporal rules of memory cooperation and competition

Rosalina Fonseca

FENS Forum 2024

ePoster

Engram competition modulates infant memory expression in development

Louisa Zielke, Erika Stewart, Petra Omejec, Sarah Power, Andrin Abegg, Shiva Tyagarajan, Tomás Ryan

FENS Forum 2024

ePoster

Signal integration and competition in a biophysical model of the substantia nigra pars reticulata

William Scott Thompson, J. J. Johannes Hjorth, Alex Kozlov, Gilad Silberberg, Jeanette Hellgren Kotaleski, Sten Grillner

FENS Forum 2024