Complex Fluids
complex fluids
PhenoSign - Molecular Dynamic Insights
Do You Know Your Blood Glucose Level? You Probably Should! A single measurement is not enough to truly understand your metabolic health. Blood glucose levels fluctuate dynamically, and meaningful insights require continuous monitoring over time. But glucose is just one example. Many other molecular concentrations in the body are not static. Their variations are influenced by individual physiology and overall health. PhenoSign, a Swiss MedTech startup, is on a mission to become the leader in real-time molecular analysis of complex fluids, supporting clinical decision-making and life sciences applications. By providing real-time, in-situ molecular insights, we aim to advance medicine and transform life sciences research. This talk will provide an overview of PhenoSign’s journey since its inception in 2022—our achievements, challenges, and the strategic roadmap we are executing to shape the future of real-time molecular diagnostics.
Life in complex fluids
Motility-dependent pathogenicity of a spirochetal bacterium
Motility is a crucial virulence factor for many species of bacteria, but it is not fully understood how bacterial motility is practically involved in pathogenicity. This time I will give a talk on the association of motility with pathogenicity in the zoonotic spirochete bacterium Leptospira. Recently, we measured swimming force of individual leptospires using optical tweezers and found that they can generate ~30 times of the swimming force of E. coli. We also observed that leptospires increase the reversal frequency of swimming at the gel-liquid interface, resembling host dermis exposed to contaminated water (Abe et al., 2020, Sci Rep). These could be involved in percutaneous infection of the spirochete. We have shown that Leptospira not only swims in liquid but also moves over solid surfaces (Tahara et al., 2018, Sci Adv). We quantified the surface motility called “crawling” on cultured kidney tissues from various mammals, showing that pathogenic leptospires crawl over the tissue surfaces more persistently that non-pathogenic ones (Xu et al., 2020, Front Microbiol). I will discuss the spirochete motility related to pathogenicity from the biophysical viewpoint.