Topic spotlight
TopicWorld Wide

cones

Discover seminars, jobs, and research tagged with cones across World Wide.
12 curated items12 Seminars
Updated 8 months ago
12 items · cones
12 results
SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 7, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscience

Euclidean coordinates are the wrong prior for primate vision

Gary Cottrell
University of California, San Diego (UCSD)
May 9, 2023

The mapping from the visual field to V1 can be approximated by a log-polar transform. In this domain, scale is a left-right shift, and rotation is an up-down shift. When fed into a standard shift-invariant convolutional network, this provides scale and rotation invariance. However, translation invariance is lost. In our model, this is compensated for by multiple fixations on an object. Due to the high concentration of cones in the fovea with the dropoff of resolution in the periphery, fully 10 degrees of visual angle take up about half of V1, with the remaining 170 degrees (or so) taking up the other half. This layout provides the basis for the central and peripheral pathways. Simulations with this model closely match human performance in scene classification, and competition between the pathways leads to the peripheral pathway being used for this task. Remarkably, in spite of the property of rotation invariance, this model can explain the inverted face effect. We suggest that the standard method of using image coordinates is the wrong prior for models of primate vision.

SeminarNeuroscienceRecording

A draft connectome for ganglion cell types of the mouse retina

David Berson
Brown University
May 15, 2022

The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.

SeminarNeuroscienceRecording

Mutation targeted gene therapy approaches to alter rod degeneration and retain cones

Maureen McCall
University of Louisville
Mar 27, 2022

My research uses electrophysiological techniques to evaluate normal retinal function, dysfunction caused by blinding retinal diseases and the restoration of function using a variety of therapeutic strategies. We can use our understanding or normal retinal function and disease-related changes to construct optimal therapeutic strategies and evaluate how they ameliorate the effects of disease. Retinitis pigmentosa (RP) is a family of blinding eye diseases caused by photoreceptor degeneration. The absence of the cells that for this primary signal leads to blindness. My interest in RP involves the evaluation of therapies to restore vision: replacing degenerated photoreceptors either with: (1) new stem or other embryonic cells, manipulated to become photoreceptors or (2) prosthetics devices that replace the photoreceptor signal with an electronic signal to light. Glaucoma is caused by increased intraocular pressure and leads to ganglion cell death, which eliminates the link between the retinal output and central visual processing. We are parsing out of the effects of increased intraocular pressure and aging on ganglion cells. Congenital Stationary Night Blindness (CSNB) is a family of diseases in which signaling is eliminated between rod photoreceptors and their postsynaptic targets, rod bipolar cells. This deafferents the retinal circuit that is responsible for vision under dim lighting. My interest in CSNB involves understanding the basic interplay between excitation and inhibition in the retinal circuit and its normal development. Because of the targeted nature of this disease, we are hopeful that a gene therapy approach can be developed to restore night vision. My work utilizes rodent disease models whose mutations mimic those found in human patients. While molecular manipulation of rodents is a fairly common approach, we have recently developed a mutant NIH miniature swine model of a common form of autosomal dominant RP (Pro23His rhodopsin mutation) in collaboration with the National Swine Resource Research Center at University of Missouri. More genetically modified mini-swine models are in the pipeline to examine other retinal diseases.

SeminarNeuroscienceRecording

Young IBRO NextInNeuro Webinar - The retinal basis of colour vision: from fish to humans

Tom Baden
University of Sussex
Mar 18, 2021

Colour vision is based on circuit-level comparison of the signals from spectral distinct types of photoreceptors. In our own eyes, the presence of three types of cones enable trichromatic colour vision. However, many phylogenetically ‘older’ vertebrates have four or more cone types, and in almost all their cases the circuits that enable tetra- or possibly even pentachromatic colour vision are not known. This includes the majority of birds, reptiles, amphibians, and bony fish. In the lab we study neuronal circuits for colour vision in non-mammalian vertebrates, with a focus on zebrafish, a tetrachromatic surface dwelling species of teleost. I will discuss how in the case of zebrafish, retinal colour computations are implemented in a fundamentally different, and probably much more efficient way compared to how they are thought to work in humans. I will then highlight how these fish circuits might be linked with those in mammals, possibly providing a new way of thinking about how circuits for colour vision are organized in vertebrates.

SeminarNeuroscienceRecording

Beyond energy - an unconventional role of mitochondria in cone photoreceptors

Wei Li
NIH Bethesda
Dec 7, 2020

The long-term goal of my research is to study the mammalian retina as a model for the central nervous system (CNS) -- to understand how it functions in physiological conditions, how it is formed, how it breaks down in pathological conditions, and how it can be repaired. I have focused on two research themes: 1) Photoreceptor structure, synapse, circuits, and development, 2) Hibernation and metabolic adaptations in the retina and beyond. As the first neuron of the visual system, photoreceptors are vital for photoreception and transmission of visual signals. I am particularly interested in cone photoreceptors, as they mediate our daylight vision with high resolution color information. Diseases affecting cone photoreceptors compromise visual functions in the central macular area of the human retina and are thus most detrimental to our vision. However, because cones are much less abundant compared to rods in most mammals, they are less well studied. We have used the ground squirrel (GS) as a model system to study cone vision, taking advantage of their unique cone-dominant retina. In particular, we have focused on short-wavelength sensitive cones (S-cones), which are not only essential for color vision, but are also an important origin of signals for biological rhythm, mood and cognitive functions, and the growth of the eye during development. We are studying critical cone synaptic structures – synaptic ribbons, the synaptic connections of S-cones, and the development of S-cones with regard to their specific connections. These works will provide knowledge of normal retinal development and function, which can also be extended to the rest of CNS; for example, the mechanisms of synaptic targeting during development. In addition, such knowledge will benefit the development of optimal therapeutic strategies for regeneration and repair in cases of retinal degenerative disease. Many neurodegenerative diseases, including retinal diseases, are rooted in metabolic stress in neurons and/or glial cells. Using the same GS model, we aim to learn from this hibernating mammal, which possesses an amazing capability to adapt to the extreme metabolic conditions during hibernation. By exploring the mechanisms of such adaptation, we hope to discover novel therapeutic tactics for neurodegenerative diseases.

SeminarNeuroscienceRecording

Cones with character: An in vivo circuit implementation of efficient coding

Tom Baden
University of Sussex
Nov 9, 2020

In this talk I will summarize some of our recent unpublished work on spectral coding in the larval zebrafish retina. Combining 2p imaging, hyperspectral stimulation, computational modeling and connectomics, we take a renewed look at the spectral tuning of cone photoreceptors in the live eye. We find that already cones optimally rotate natural colour space in a PCA-like fashion to disambiguate greyscale from "colour" information. We then follow this signal through the retinal layers and ultimately into the brain to explore the major spectral computations performed by the visual system at its consecutive stages. We find that by and large, zebrafish colour vision can be broken into three major spectral zones: long wavelength grey-scale-like vision, short-wavelength prey capture circuits, and spectrally diverse mid-wavelength circuits which possibly support the bulk of "true colour vision" in this tetrachromate vertebrate.

SeminarNeuroscienceRecording

Predicting the future from the past: Motion processing in the primate retina

Mike Manookin
University of Washington
Nov 3, 2020

The Manookin lab is investigating the structure and function of neural circuits within the retina and developing techniques for treating blindness. Many blinding diseases, such as retinitis pigmentosa, cause death of the rods and cones, but spare other cell types within the retina. Thus, many techniques for restoring visual function following blindness are based on the premise that other cells within the retina remain viable and capable of performing their various roles in visual processing. There are more than 80 different neuronal types in the human retina and these form the components of the specialized circuits that transform the signals from photoreceptors into a neural code responsible for our perception of color, form, and motion, and thus visual experience. The Manookin laboratory is investigating the function and connectivity of neural circuits in the retina using a variety of techniques including electrophysiology, calcium imaging, and electron microscopy. This knowledge is being used to develop more effective techniques for restoring visual function following blindness.

SeminarNeuroscienceRecording

Molecular controls over corticospinal neuron axon branching at specific spinal segments

Yasuhiro Itoh
Harvard
Oct 27, 2020

Corticospinal neurons (CSN) are the cortical projection neurons that innervate the spinal cord and some brainstem targets with segmental precision to control voluntary movement of specific functional motor groups, limb sections, or individual digits, yet molecular regulation over CSN segmental target specificity is essentially unknown. CSN subpopulations exhibit striking axon targeting specificity from development into maturity: Evolutionarily newer rostrolateral CSN exclusively innervate bulbar-cervical targets (CSNBC-lat), while evolutionarily older caudomedial CSN (CSNmed) are more heterogeneous, with distinct subpopulations extending axons to either bulbar-cervical or thoraco-lumbar segments. The cervical cord, with its evolutionarily enhanced precision of forelimb movement, is innervated by multiple CSN subpopulations, suggesting inter-neuronal interactions in establishing corticospinal connectivity. I identify that Lumican, previously unrecognized in axon development, controls the specificity of cervical spinal cord innervation by CSN. Remarkably, Lumican, an extracellular matrix protein expressed by CSNBC-lat, non-cell-autonomously suppresses axon collateralization in the cervical cord by CSNmed. Intersectional viral labeling and mouse genetics further identify that Lumican controls axon collateralization by multiple subpopulations in caudomedial sensorimotor cortex. These results identify inter-axonal molecular crosstalk between CSN subpopulations as a novel mechanism controlling corticospinal connectivity and competitive specificity. Further, this mechanism has potential implications for evolutionary diversification of corticospinal circuitry with finer scale precision. "" Complementing this work, to comprehensively elucidate related axon projection mechanisms functioning at tips of growing CSN axons in vivo, I am currently applying experimental and analytic approaches recently developed in my postdoc lab (Poulopoulos*, Murphy*, Nature, 2019) to quantitatively and subcellularly “map” RNA and protein molecular machinery of subtype-specific growth cones, in parallel to their parent somata, isolated directly in vivo from developing subcerebral projection neurons (SCPN; the broader cortical output neuron population targeting both brainstem and spinal cord; includes CSN). I am investigating both normal development and GC-soma dysregulation with mutation of central CSN-SCPN transcriptional regulator Ctip2/Bcl11b.

SeminarNeuroscienceRecording

Mechanism(s) of negative feedback from horizontal cells to cones and its consequence for (color) vision

Maarten Kamermans
Netherland Institute for Neurosciences
Oct 25, 2020

Vision starts in the retina where images are transformed and coded into neuronal activity relevant for the brain. These coding steps function optimally over a wide range of conditions: from bright day on the beach to a moonless night. Under these very different conditions, specific retinal mechanisms continue to select relevant aspects of the visual world and send this information to the brain. We are studying the neuronal processing involved in these selection and adaptation processes. This knowledge is essential for understanding how the visual system works and forms the basis for research dedicated to restoring vision in blind people.

SeminarNeuroscienceRecording

Sensing Light for Sight and Physiological Control

Michael Tri Do
Harvard Medical School and Boston Children's Hospital
Aug 10, 2020

Organisms sense light for purposes that range from recognizing objects to synchronizing activity with environmental cycles. What mechanisms serve these diverse tasks? This seminar will examine the specializations of two cell types. First are the foveal cone photoreceptors. These neurons are used by primates to see far greater detail than other mammals, which lack them. How do the biophysical properties of foveal cones support high-acuity vision? Second are the melanopsin retinal ganglion cells, which are conserved among mammals and essential for processes that include regulation of the circadian clock, sleep, and hormone levels. How do these neurons encode light, and is encoding customized for animals of different niches? In pursuing these questions, a broad goal is to learn how various levels of biological organization are shaped to behavioural needs.