← Back

Convexity

Topic spotlight
TopicWorld Wide

convexity

Discover seminars, jobs, and research tagged with convexity across World Wide.
3 curated items3 Seminars
Updated almost 3 years ago
3 items · convexity
3 results
SeminarNeuroscienceRecording

Convex neural codes in recurrent networks and sensory systems

Vladimir Itskov
The Pennsylvania State University
Dec 13, 2022

Neural activity in many sensory systems is organized on low-dimensional manifolds by means of convex receptive fields. Neural codes in these areas are constrained by this organization, as not every neural code is compatible with convex receptive fields. The same codes are also constrained by the structure of the underlying neural network. In my talk I will attempt to provide answers to the following natural questions: (i) How do recurrent circuits generate codes that are compatible with the convexity of receptive fields? (ii) How can we utilize the constraints imposed by the convex receptive field to understand the underlying stimulus space. To answer question (i), we describe the combinatorics of the steady states and fixed points of recurrent networks that satisfy the Dale’s law. It turns out the combinatorics of the fixed points are completely determined by two distinct conditions: (a) the connectivity graph of the network and (b) a spectral condition on the synaptic matrix. We give a characterization of exactly which features of connectivity determine the combinatorics of the fixed points. We also find that a generic recurrent network that satisfies Dale's law outputs convex combinatorial codes. To address question (ii), I will describe methods based on ideas from topology and geometry that take advantage of the convex receptive field properties to infer the dimension of (non-linear) neural representations. I will illustrate the first method by inferring basic features of the neural representations in the mouse olfactory bulb.

SeminarNeuroscienceRecording

On the implicit bias of SGD in deep learning

Amir Globerson
Tel Aviv University
Oct 19, 2021

Tali's work emphasized the tradeoff between compression and information preservation. In this talk I will explore this theme in the context of deep learning. Artificial neural networks have recently revolutionized the field of machine learning. However, we still do not have sufficient theoretical understanding of how such models can be successfully learned. Two specific questions in this context are: how can neural nets be learned despite the non-convexity of the learning problem, and how can they generalize well despite often having more parameters than training data. I will describe our recent work showing that gradient-descent optimization indeed leads to 'simpler' models, where simplicity is captured by lower weight norm and in some cases clustering of weight vectors. We demonstrate this for several teacher and student architectures, including learning linear teachers with ReLU networks, learning boolean functions and learning convolutional pattern detection architectures.

SeminarNeuroscienceRecording

More than mere association: Are some figure-ground organisation processes mediated by perceptual grouping mechanisms?

Joseph Brooks
Keele University
Dec 7, 2020

Figure-ground organisation and perceptual grouping are classic topics in Gestalt and perceptual psychology. They often appear alongside one another in introductory textbook chapters on perception and have a long history of investigation. However, they are typically discussed as separate processes of perceptual organisation with their own distinct phenomena and mechanisms. Here, I will propose that perceptual grouping and figure-ground organisation are strongly linked. In particular, perceptual grouping can provide a basis for, and may share mechanisms with, a wide range of figure-ground principles. To support this claim, I will describe a new class of figure-ground principles based on perceptual grouping between edges and demonstrate that this inter-edge grouping (IEG) is a powerful influence on figure-ground organisation. I will also draw support from our other results showing that grouping between edges and regions (i.e., edge-region grouping) can affect figure-ground organisation (Palmer & Brooks, 2008) and that contextual influences in figure-ground organisation can be gated by perceptual grouping between edges (Brooks & Driver, 2010). In addition to these modern observations, I will also argue that we can describe some classic figure-ground principles (e.g., symmetry, convexity, etc.) using perceptual grouping mechanisms. These results suggest that figure-ground organisation and perceptual grouping have more than a mere association under the umbrella topics of Gestalt psychology and perceptual organisation. Instead, perceptual grouping may provide a mechanism underlying a broad class of new and extant figure-ground principles.