Convolutional Neural Networks
convolutional neural networks
Connecting performance benefits on visual tasks to neural mechanisms using convolutional neural networks
Behavioral studies have demonstrated that certain task features reliably enhance classification performance for challenging visual stimuli. These include extended image presentation time and the valid cueing of attention. Here, I will show how convolutional neural networks can be used as a model of the visual system that connects neural activity changes with such performance changes. Specifically, I will discuss how different anatomical forms of recurrence can account for better classification of noisy and degraded images with extended processing time. I will then show how experimentally-observed neural activity changes associated with feature attention lead to observed performance changes on detection tasks. I will also discuss the implications these results have for how we identify the neural mechanisms and architectures important for behavior.
Feedforward and feedback processes in visual recognition
Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching – and sometimes even surpassing – human accuracy on a variety of visual recognition tasks. In this talk, however, I will show that these neural networks and their recent extensions exhibit a limited ability to solve seemingly simple visual reasoning problems involving incremental grouping, similarity, and spatial relation judgments. Our group has developed a recurrent network model of classical and extra-classical receptive field circuits that is constrained by the anatomy and physiology of the visual cortex. The model was shown to account for diverse visual illusions providing computational evidence for a novel canonical circuit that is shared across visual modalities. I will show that this computational neuroscience model can be turned into a modern end-to-end trainable deep recurrent network architecture that addresses some of the shortcomings exhibited by state-of-the-art feedforward networks for solving complex visual reasoning tasks. This suggests that neuroscience may contribute powerful new ideas and approaches to computer science and artificial intelligence.
Probabilistic computation in natural vision
A central goal of vision science is to understand the principles underlying the perception and neural coding of the complex visual environment of our everyday experience. In the visual cortex, foundational work with artificial stimuli, and more recent work combining natural images and deep convolutional neural networks, have revealed much about the tuning of cortical neurons to specific image features. However, a major limitation of this existing work is its focus on single-neuron response strength to isolated images. First, during natural vision, the inputs to cortical neurons are not isolated but rather embedded in a rich spatial and temporal context. Second, the full structure of population activity—including the substantial trial-to-trial variability that is shared among neurons—determines encoded information and, ultimately, perception. In the first part of this talk, I will argue for a normative approach to study encoding of natural images in primary visual cortex (V1), which combines a detailed understanding of the sensory inputs with a theory of how those inputs should be represented. Specifically, we hypothesize that V1 response structure serves to approximate a probabilistic representation optimized to the statistics of natural visual inputs, and that contextual modulation is an integral aspect of achieving this goal. I will present a concrete computational framework that instantiates this hypothesis, and data recorded using multielectrode arrays in macaque V1 to test its predictions. In the second part, I will discuss how we are leveraging this framework to develop deep probabilistic algorithms for natural image and video segmentation.
Introducing YAPiC: An Open Source tool for biologists to perform complex image segmentation with deep learning
Robust detection of biological structures such as neuronal dendrites in brightfield micrographs, tumor tissue in histological slides, or pathological brain regions in MRI scans is a fundamental task in bio-image analysis. Detection of those structures requests complex decision making which is often impossible with current image analysis software, and therefore typically executed by humans in a tedious and time-consuming manual procedure. Supervised pixel classification based on Deep Convolutional Neural Networks (DNNs) is currently emerging as the most promising technique to solve such complex region detection tasks. Here, a self-learning artificial neural network is trained with a small set of manually annotated images to eventually identify the trained structures from large image data sets in a fully automated way. While supervised pixel classification based on faster machine learning algorithms like Random Forests are nowadays part of the standard toolbox of bio-image analysts (e.g. Ilastik), the currently emerging tools based on deep learning are still rarely used. There is also not much experience in the community how much training data has to be collected, to obtain a reasonable prediction result with deep learning based approaches. Our software YAPiC (Yet Another Pixel Classifier) provides an easy-to-use Python- and command line interface and is purely designed for intuitive pixel classification of multidimensional images with DNNs. With the aim to integrate well in the current open source ecosystem, YAPiC utilizes the Ilastik user interface in combination with a high performance GPU server for model training and prediction. Numerous research groups at our institute have already successfully applied YAPiC for a variety of tasks. From our experience, a surprisingly low amount of sparse label data is needed to train a sufficiently working classifier for typical bioimaging applications. Not least because of this, YAPiC has become the "standard weapon” for our core facility to detect objects in hard-to-segement images. We would like to present some use cases like cell classification in high content screening, tissue detection in histological slides, quantification of neural outgrowth in phase contrast time series, or actin filament detection in transmission electron microscopy.
Characterising the brain representations behind variations in real-world visual behaviour
Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.
Top-down Modulation in Human Visual Cortex
Human vision flaunts a remarkable ability to recognize objects in the surrounding environment even in the absence of complete visual representation of these objects. This process is done almost intuitively and it was not until scientists had to tackle this problem in computer vision that they noticed its complexity. While current advances in artificial vision systems have made great strides exceeding human level in normal vision tasks, it has yet to achieve a similar robustness level. One cause of this robustness is the extensive connectivity that is not limited to a feedforward hierarchical pathway similar to the current state-of-the-art deep convolutional neural networks but also comprises recurrent and top-down connections. They allow the human brain to enhance the neural representations of degraded images in concordance with meaningful representations stored in memory. The mechanisms by which these different pathways interact are still not understood. In this seminar, studies concerning the effect of recurrent and top-down modulation on the neural representations resulting from viewing blurred images will be presented. Those studies attempted to uncover the role of recurrent and top-down connections in human vision. The results presented challenge the notion of predictive coding as a mechanism for top-down modulation of visual information during natural vision. They show that neural representation enhancement (sharpening) appears to be a more dominant process of different levels of visual hierarchy. They also show that inference in visual recognition is achieved through a Bayesian process between incoming visual information and priors from deeper processing regions in the brain.
Crowding and the Architecture of the Visual System
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural Networks (ffCNNs), inspired by this classic framework, have revolutionized computer vision and been adopted as tools in neuroscience. However, despite these successes, there is much more to vision. I will present our work using visual crowding and related psychophysical effects as probes into visual processes that go beyond the classic framework. In crowding, perception of a target deteriorates in clutter. We focus on global aspects of crowding, in which perception of a small target is strongly modulated by the global configuration of elements across the visual field. We show that models based on the classic framework, including ffCNNs, cannot explain these effects for principled reasons and identify recurrent grouping and segmentation as a key missing ingredient. Then, we show that capsule networks, a recent kind of deep learning architecture combining the power of ffCNNs with recurrent grouping and segmentation, naturally explain these effects. We provide psychophysical evidence that humans indeed use a similar recurrent grouping and segmentation strategy in global crowding effects. In crowding, visual elements interfere across space. To study how elements interfere over time, we use the Sequential Metacontrast psychophysical paradigm, in which perception of visual elements depends on elements presented hundreds of milliseconds later. We psychophysically characterize the temporal structure of this interference and propose a simple computational model. Our results support the idea that perception is a discrete process. Together, the results presented here provide stepping-stones towards a fuller understanding of the visual system by suggesting architectural changes needed for more human-like neural computations.
Domain Specificity in the Human Brain: What, Whether, and Why?
The last quarter century has provided extensive evidence that some regions of the human cortex are selectively engaged in processing a single specific domain of information, from faces, places, and bodies to language, music, and other people’s thoughts. This work dovetails with earlier theories in cognitive science highlighting domain specificity in human cognition, development, and evolution. But many questions remain unanswered about even the clearest cases of domain specificity in the brain, the selective engagement of the FFA, PPA, and EBA in the perception of faces, places, and bodies, respectively. First, these claims lack precision, saying little about what is computed and how, and relying on human judgements to decide what counts as a face, place, or body. Second, they provide no account of the reliably varying responses of these regions across different “preferred” images, or across different “nonpreferred” images for each category. Third, the category selectivity of each region is vulnerable to refutation if any of the vast set of as-yet-untested nonpreferred images turns out to produce a stronger response than preferred images for that region. Fourth, and most fundamentally, they provide no account of why, from a computational point of view, brains should exhibit this striking degree of functional specificity in the first place, and why we should have the particular visual specializations we do, for faces, places, and bodies, but not (apparently) for food or snakes. The advent of convolutional neural networks (CNNs) to model visual processing in the ventral pathway has opened up many opportunities to address these long-standing questions in new ways. I will describe ongoing efforts in our lab to harness CNNs to do just that.
Using 1D-convolutional neural networks to detect and interpret sharp-wave ripples
COSYNE 2022
Using 1D-convolutional neural networks to detect and interpret sharp-wave ripples
COSYNE 2022
Convolutional neural networks describe encoding subspaces of local circuits in auditory cortex
COSYNE 2025
Integrating macrostructural and microstructural representations of white matter through convolutional neural networks
FENS Forum 2024
Using retinotopic mapping in convolutional neural networks for object categorization leads to saliency-based visual object localization
FENS Forum 2024
Mooney Face Image Processing in Deep Convolutional Neural Networks Compared to Humans
Neuromatch 5
Visualizing surround suppression in deep convolutional neural networks
Neuromatch 5