← Back

Coordination

Topic spotlight
TopicWorld Wide

coordination

Discover seminars, jobs, and research tagged with coordination across World Wide.
53 curated items36 Seminars17 ePosters
Updated about 1 month ago
53 items · coordination
53 results
SeminarNeuroscience

Neural mechanisms of rhythmic motor control in Drosophila

John Tuthill
University of Washington, Seattle, USA
May 15, 2025

All animal locomotion is rhythmic,whether it is achieved through undulatory movement of the whole body or the coordination of articulated limbs. Neurobiologists have long studied locomotor circuits that produce rhythmic activity with non-rhythmic input, also called central pattern generators (CPGs). However, the cellular and microcircuit implementation of a walking CPG has not been described for any limbed animal. New comprehensive connectomes of the fruit fly ventral nerve cord (VNC) provide an opportunity to study rhythmogenic walking circuits at a synaptic scale.We use a data-driven network modeling approach to identify and characterize a putative walking CPG in the Drosophila leg motor system.

SeminarNeuroscience

Structural & Functional Neuroplasticity in Children with Hemiplegia

Christos Papadelis
University of Texas at Arlington
Feb 20, 2025

About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.

SeminarNeuroscienceRecording

Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment

Mattia Rosso
Ghent University, IPEM Institute for Systematic Musicology
Nov 28, 2023

Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.

SeminarNeuroscience

The balanced brain: two-photon microscopy of inhibitory synapse formation

Corette Wierenga
Donders Institute
May 10, 2023

Coordination between excitatory and inhibitory synapses (providing positive and negative signals respectively) is required to ensure proper information processing in the brain. Many brain disorders, especially neurodevelopental disorders, are rooted in a specific disturbance of this coordination. In my research group we use a combination of two-photon microscopy and electrophisiology to examine how inhibitory synapses are fromed and how this formation is coordinated with nearby excitatroy synapses.

SeminarNeuroscience

Precise spatio-temporal spike patterns in cortex and model

Sonia Gruen
Forschungszentrum Jülich, Germany
Apr 25, 2023

The cell assembly hypothesis postulates that groups of coordinated neurons form the basis of information processing. Here, we test this hypothesis by analyzing massively parallel spiking activity recorded in monkey motor cortex during a reach-to-grasp experiment for the presence of significant ms-precise spatio-temporal spike patterns (STPs). For this purpose, the parallel spike trains were analyzed for STPs by the SPADE method (Stella et al, 2019, Biosystems), which detects, counts and evaluates spike patterns for their significance by the use of surrogates (Stella et al, 2022 eNeuro). As a result we find STPs in 19/20 data sets (each of 15min) from two monkeys, but only a small fraction of the recorded neurons are involved in STPs. To consider the different behavioral states during the task, we analyzed the data in a quasi time-resolved analysis by dividing the data into behaviorally relevant time epochs. The STPs that occur in the various epochs are specific to behavioral context - in terms of neurons involved and temporal lags between the spikes of the STP. Furthermore we find, that the STPs often share individual neurons across epochs. Since we interprete the occurrence of a particular STP as the signature of a particular active cell assembly, our interpretation is that the neurons multiplex their cell assembly membership. In a related study, we model these findings by networks with embedded synfire chains (Kleinjohann et al, 2022, bioRxiv 2022.08.02.502431).

SeminarNeuroscienceRecording

The strongly recurrent regime of cortical networks

David Dahmen
Jülich Research Centre, Germany
Mar 28, 2023

Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons. These neurons exhibit highly complex coordination patterns. Where does this complexity stem from? One candidate is the ubiquitous heterogeneity in connectivity of local neural circuits. Studying neural network dynamics in the linearized regime and using tools from statistical field theory of disordered systems, we derive relations between structure and dynamics that are readily applicable to subsampled recordings of neural circuits: Measuring the statistics of pairwise covariances allows us to infer statistical properties of the underlying connectivity. Applying our results to spontaneous activity of macaque motor cortex, we find that the underlying network operates in a strongly recurrent regime. In this regime, network connectivity is highly heterogeneous, as quantified by a large radius of bulk connectivity eigenvalues. Being close to the point of linear instability, this dynamical regime predicts a rich correlation structure, a large dynamical repertoire, long-range interaction patterns, relatively low dimensionality and a sensitive control of neuronal coordination. These predictions are verified in analyses of spontaneous activity of macaque motor cortex and mouse visual cortex. Finally, we show that even microscopic features of connectivity, such as connection motifs, systematically scale up to determine the global organization of activity in neural circuits.

SeminarNeuroscienceRecording

Minute-scale periodic sequences in medial entorhinal cortex

Soledad Gonzalo Cogno
Norwegian University of Science and Technology, Trondheim
Jan 31, 2023

The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and episodic memory, operations that require neural activity to be organized across long durations of experience. While location is known to be encoded by a plethora of spatially tuned cell types in this brain region, little is known about how the activity of entorhinal cells is tied together over time. Among the brain’s most powerful mechanisms for neural coordination are network oscillations, which dynamically synchronize neural activity across circuit elements. In MEC, theta and gamma oscillations provide temporal structure to the neural population activity at subsecond time scales. It remains an open question, however, whether similarly coordination occurs in MEC at behavioural time scales, in the second-to-minute regime. In this talk I will show that MEC activity can be organized into a minute-scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped sequences. The oscillation sometimes advances uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The ultraslow periodic sequences in MEC may have the potential to couple its neurons and circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural time scales.

SeminarNeuroscience

How neural circuits organize and learn during development

Julijana Gjorgjieva
Technical University of Munich
Jun 14, 2022

To generate brain circuits that are both flexible and stable requires the coordination of powerful developmental mechanisms acting at different scales, including activity-dependent synaptic plasticity and changes in single neuron properties. The brain prepares to efficiently compute information and reliably generate behavior during early development without any prior sensory experience but through patterned spontaneous activity. After the onset of sensory experience, ongoing activity continues to modify sensory circuits, and plays an important functional role in the mature brain. Using quantitative data analysis, experiment-driven theory and computational modeling, I will present a framework for how neural circuits are built and organized during early postnatal development into functional units, and how they are modified by intact and perturbed sensory-evoked activity. Inspired by experimental data from sensory cortex, I will then show how neural circuits use the resulting non-random connectivity to flexibly gate a network’s response, providing a mechanism for routing information.

SeminarNeuroscienceRecording

What the fly’s eye tells the fly’s brain…and beyond

Gwyneth Card
Janelia Research Campus, HHMI
May 31, 2022

Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.

SeminarPhysics of Life

Retinal neurogenesis and lamination: What to become, where to become it and how to move from there!

Caren Norden
Instituto Gulbenkian de Ciência
Mar 24, 2022

The vertebrate retina is an important outpost of the central nervous system, responsible for the perception and transmission of visual information. It consists of five different types of neurons that reproducibly laminate into three layers, a process of crucial importance for the organ’s function. Unsurprisingly, impaired fate decisions as well as impaired neuronal migrations and lamination lead to impaired retinal function. However, how processes are coordinated at the cellular and tissue level and how variable or robust retinal formation is, is currently still underexplored. In my lab, we aim to shed light on these questions from different angles, studying on the one hand differentiation phenomena and their variability and on the other hand the downstream migration and lamination phenomena. We use zebrafish as our main model system due to its excellent possibilities for live imaging and quantitative developmental biology. More recently we also started to use human retinal organoids as a comparative system. We further employ cross disciplinary approaches to address these issues combining work of cell and developmental biology, biomechanics, theory and computer science. Together, this allows us to integrate cell with tissue-wide phenomena and generate an appreciation of the reproducibility and variability of events.

SeminarNeuroscience

Effects of pathological Tau on hippocampal neuronal activity and spatial memory in ageing mice

Tim Viney
University of Oxford
Feb 10, 2022

The gradual accumulation of hyperphosphorylated forms of the Tau protein (pTau) in the human brain correlate with cognitive dysfunction and neurodegeneration. I will present our recent findings on the consequences of human pTau aggregation in the hippocampal formation of a mouse tauopathy model. We show that pTau preferentially accumulates in deep-layer pyramidal neurons, leading to their neurodegeneration. In aged but not younger mice, pTau spreads to oligodendrocytes. During ‘goal-directed’ navigation, we detect fewer high-firing pyramidal cells, but coupling to network oscillations is maintained in the remaining cells. The firing patterns of individually recorded and labelled pyramidal and GABAergic neurons are similar in transgenic and non-transgenic mice, as are network oscillations, suggesting intact neuronal coordination. This is consistent with a lack of pTau in subcortical brain areas that provide rhythmic input to the cortex. Spatial memory tests reveal a reduction in short-term familiarity of spatial cues but unimpaired spatial working and reference memory. These results suggest that preserved subcortical network mechanisms compensate for the widespread pTau aggregation in the hippocampal formation. I will also briefly discuss ideas on the subcortical origins of spatial memory and the concept of the cortex as a monitoring device.

SeminarNeuroscienceRecording

Interpersonal synchrony of body/brain, Solo & Team Flow

Shinsuke Shimojo
California Institute of Technology
Jan 27, 2022

Flow is defined as an altered state of consciousness with excessive attention and enormous sense of pleasure, when engaged in a challenging task, first postulated by a psychologist, the late M. Csikszentmihayli. The main focus of this talk will be “Team Flow,” but there were two lines of previous studies in our laboratory as its background. First is inter-body and inter-brain coordination/synchrony between individuals. Considering various rhythmic echoing/synchronization phenomena in animal behavior, it could be regarded as the biological, sub-symbolic and implicit origin of social interactions. The second line of precursor research is on the state of Solo Flow in game playing. We employed attenuation of AEP (Auditory Evoked Potential) to task-irrelevant sound probes as an objective-neural indicator of such a Flow status, and found that; 1) Mutual link between the ACC & the TP is critical, and 2) overall, top-down influence is enhanced while bottom-up causality is attenuated. Having these as the background, I will present our latest study of Team Flow in game playing. We found that; 3) the neural correlates of Team Flow is distinctively different from those of Solo Flow nor of non-flow social, 4) the left medial temporal cortex seems to form an integrative node for Team Flow, receiving input related to Solo Flow state from the right PFC and input related to social state from the right IFC, and 5) Intra-brain (dis)similarity of brain activity well predicts (dis)similarity of skills/cognition as well as affinity for inter-brain coherence.

SeminarNeuroscienceRecording

Collective Construction in Natural and Artificial Swarms

Justin Werfel
Harvard University
Oct 7, 2021

Natural systems provide both puzzles to unravel and demonstrations of what's possible. The natural world is full of complex systems of dynamically interchangeable, individually unreliable components that produce effective and reliable outcomes at the group level. A complementary goal to understanding the operation of such systems is that of being able to engineer artifacts that work in a similar way. One notable type of collective behavior is collective construction, epitomized by mound-building termites, which build towering, intricate mounds through the joint activity of millions of independent and limited insects. The artificial counterpart would be swarms of robots designed to build human-relevant structures. I will discuss work on both aspects of the problem, including studies of cues that individual termite workers use to help direct their actions and coordinate colony activity, and development of robot systems that build user-specified structures despite limited information and unpredictable variability in the process. These examples illustrate principles used by the insects and show how they can be applied in systems we create.

SeminarNeuroscienceRecording

Efficient coding and receptive field coordination in the retina

Greg Field
Duke University School of Medicine
Jun 20, 2021

My laboratory studies how the retina processes visual scenes and transmits this information to the brain. We use multi-electrode arrays to record the activity of hundreds of retina neurons simultaneously in conjunction with transgenic mouse lines and chemogenetics to manipulate neural circuit function. We are interested in three major areas. First, we work to understand how neurons in the retina are functionally connected. Second we are studying how light-adaptation and circadian rhythms alter visual processing in the retina. Finally, we are working to understand the mechanisms of retinal degenerative conditions and we are investigating potential treatments in animal models.

SeminarPhysics of LifeRecording

Sperm have got the bends

Meurig Gallagher
University of Birmingham
Apr 27, 2021

The journey of development begins with sperm swimming through the female reproductive tract en-route to the egg. In order to successfully complete this journey sperm must beat a single flagellum, propelling themselves through a wide range of fluids, from liquified semen to viscous cervical mucus. It is well-known that the beating tail is driven by an array of 9 microtubule doublets surrounding a central pair, with interconnecting dynein motors generating shear forces and driving elastic wave propagation. Despite this knowledge, the exact mechanism by which coordination of these motors drives oscillating waves along the flagellum remains unknown; hypothesised mechanisms include curvature control, sliding control, and geometric clutch. In this talk we will discuss the mechanisms of flagellar bending, and present a simple model of active curvature that is able to produce many of the various sperm waveforms that are seen experimentally, including those in low and high viscosity fluids and after a cell has ‘hyperactivated’ (a chemical process thought to be key for fertilization). We will show comparisons between these simulated waveforms and sperm that have been experimentally tracked, and discuss methods for fitting simulated mechanistic parameters to these real cells.

SeminarNeuroscienceRecording

A circuit for coordination of learned and innate courtship behaviors

Mor Ben-Tov
Duke
Jan 5, 2021
SeminarNeuroscienceRecording

Neural Mechanisms of Coordination in Duetting Wrens

Melissa Coleman
Claremont McKenna
Dec 15, 2020

To communicate effectively, two individuals must take turns to prevent overlap in their signals. How does the nervous system coordinate vocalizations between two individuals? Female and male plain-tailed wrens sing a duet in which they alternate syllable production so rapidly and precisely it sounds as if a single bird is singing. I will talk about experiments that examine the interaction between sensory cues and motor activity, using behavioral manipulations and neurophysiological recordings from pairs of awake, duetting wrens. I will show evidence that auditory cues link the brains of the wrens by modulating motor circuits.

SeminarNeuroscienceRecording

The social contract in miniature: Virtual Bargaining and the theory of joint action, meaning and the foundations of culture

Nick Chater
Warwick University
Dec 10, 2020

How can people coordinate their actions or make joint decisions? One possibility is that each person attempts to predict the actions of the other(s), and best-responds accordingly. But this can lead to bad outcomes, and sometimes even vicious circularity. An alternative view is that each person attempts to work out what the two or more players would agree to do, if they were to bargain explicitly. If the result of such a "virtual" bargain is "obvious," then the players can simply play their respective roles in that bargain. I suggest that virtual bargaining is essential to genuinely social interaction (rather than viewing other people as instruments), and may even be uniquely human. This approach aims to respect methodological individualism, a key principle in many areas of social science, while explaining how human groups can, in a very real sense, be "greater" than the sum of their individual members.

SeminarNeuroscienceRecording

Linking neural representations of space by multiple attractor networks in the entorhinal cortex and the hippocampus

Yoram Burak
Hebrew University
Dec 8, 2020

In the past decade evidence has accumulated in favor of the hypothesis that multiple sub-networks in the medial entorhinal cortex (MEC) are characterized by low-dimensional, continuous attractor dynamics. Much has been learned about the joint activity of grid cells within a module (a module consists of grid cells that share a common grid spacing), but little is known about the interactions between them. Under typical conditions of spatial exploration in which sensory cues are abundant, all grid-cells in the MEC represent the animal’s position in space and their joint activity lies on a two-dimensional manifold. However, if the grid cells in a single module mechanistically constitute independent attractor networks, then under conditions in which salient sensory cues are absent, errors could accumulate in the different modules in an uncoordinated manner. Such uncoordinated errors would give rise to catastrophic readout errors when attempting to decode position from the joint grid-cell activity. I will discuss recent theoretical works from our group, in which we explored different mechanisms that could impose coordination in the different modules. One of these mechanisms involves coordination with the hippocampus and must be set up such that it operates across multiple spatial maps that represent different environments. The other mechanism is internal to the entorhinal cortex and independent of the hippocampus.

SeminarNeuroscience

Coordination of thalamo-cortical loops and global motor-sensory-motor loops in perception

Ehud Ahissar
Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
Nov 29, 2020
SeminarNeuroscienceRecording

Learning Neurobiology with electric fish

Angel Caputi, MD, PhD
Profesor Titular de Investigación, Departamento de Neurociencias Integrativas y Computacionales
Nov 15, 2020

Electric Gymnotiform fish live in muddy, shallow waters near the shore – hiding in the dense filamentous roots of floating plants such as Eichornia crassipes (“camalote”). They explore their surroundings by using a series of electric pulses that serve as self emitted carrier of electrosensory signals. This propagates at the speed of light through this spongiform habitat and is barely sensed by the lateral line of predators and prey. The emitted field polarizes the surroundings according to the difference in impedance with water which in turn modifies the profile of transcutaneous currents considered as an electrosensory image. Using this system, pulse Gymnotiformes create an electrosensory bubble where an object’s location, impedance, size and other characteristics are discriminated and probably recognized. Although consciousness is still not well-proven, cognitive functions as volition, attention, and path integration have been shown. Here I will summarize different aspects of the electromotor electrosensory loop of pulse Gymnotiforms. First, I will address how objects are polarized with a stereotyped but temporospatially complex electric field, consisting of brief pulses emitted at regular intervals. This relies on complex electric organs quasi periodically activated through an electromotor coordination system by a pacemaker in the medulla. Second, I will deal with the imaging mechanisms of pulse gymnotiform fish and the presence of two regions in the electrosensory field, a rostral region where the field time course is coherent and field vector direction is constant all along the electric organ discharge and a lateral region where the field time course is site specific and field vector direction describes a stereotyped 3D trajectory. Third, I will describe the electrosensory mosaic and their characteristics. Receptor and primary afferents correspond one to one showing subtypes optimally responding to the time course of the self generated pulse with a characteristic train of spikes. While polarized objects at the rostral region project their electric images on the perioral region where electrosensory receptor density, subtypes and central projection are maximal, the image of objects on the side recruit a single type of scattered receptors. Therefore, the rostral mosaic has been likened to an electrosensory fovea and its receptive field referred to as foveal field. The rest of the mosaic and field are referred to as peripheral. Finally, I will describe ongoing work on early processing structures. I will try to generate an integrated view, including anatomical and functional data obtained in vitro, acute experiments, and unitary recordings in freely moving fish. We have recently shown have shown that these fish tract allo-generated fields and the virtual fields generated by nearby objects in the presence of self-generated fields to explore the nearby environment. These data together with the presence of a multimodal receptor mosaic at the cutaneous surface particularly surrounding the mouth and an important role of proprioception in early sensory processing suggests the hypothesis that the active electrosensory system is part of a multimodal haptic sense.

SeminarNeuroscience

A balancing act: goal-oriented control of stability reflexes by visual feedback

Eugenia Chiappe
Champalimaud Center for the Unknown
Nov 9, 2020

During the course of an animal’s interaction with its environments, activity within central neural circuits is orchestrated exquisitely to structure goal-oriented movement. During walking, for example, the head, body and limbs are coordinated in distinctive ways that are guided by the task at play, and also by posture and balance requirements. Hence, the overall performance of goal-oriented walking depends on the interplay between task-specific motor plans and stability reflexes. Copies of motor plans, typically described by the term efference copy, modulate stability reflexes in a predictive manner. However, the highly uncertain nature of natural environments indicates that the effect of efferent copy on movement control is insufficient; additional mechanisms must exist to regulate stability reflexes and coordinate motor programs flexibly under non-predictable conditions. In this talk, I will discuss our recent work examining how self-generated visual signals orchestrate the interplay between task-specific motor plans and stability reflexes during a self-paced, goal-oriented walking behavior.

SeminarNeuroscienceRecording

The developing visual brain – answers and questions

Janette Atkinson & Oliver Braddick
UCL & Oxford
Oct 26, 2020

We will start our talk with a short video of our research, illustrating methods (some old and new) and findings that have provided our current understanding of how visual capabilities develop in infancy and early childhood. However, our research poses some outstanding questions. We will briefly discuss three issues, which are linked by a common focus on the development of visual attentional processing: (1) How do recurrent cortical loops contribute to development? Cortical selectivity (e.g., to orientation, motion, and binocular disparity) develops in the early months of life. However, these systems are not purely feedforward but depend on parallel pathways, with recurrent feedback loops playing a critical role. The development of diverse networks, particularly for motion processing, may explain changes in dynamic responses and resolve developmental data obtained with different methodologies. One possible role for these loops is in top-down attentional control of visual processing. (2) Why do hyperopic infants become strabismic (cross-eyes)? Binocular interaction is a particularly sensitive area of development. Standard clinical accounts suppose that long-sighted (hyperopic) refractive errors require accommodative effort, putting stress on the accommodation-convergence link that leads to its breakdown and strabismus. Our large-scale population screening studies of 9-month infants question this: hyperopic infants are at higher risk of strabismus and impaired vision (amblyopia and impaired attention) but these hyperopic infants often under- rather than over-accommodate. This poor accommodation may reflect poor early attention processing, possibly a ‘soft sign’ of subtle cerebral dysfunction. (3) What do many neurodevelopmental disorders have in common? Despite similar cognitive demands, global motion perception is much more impaired than global static form across diverse neurodevelopmental disorders including Down and Williams Syndromes, Fragile-X, Autism, children with premature birth and infants with perinatal brain injury. These deficits in motion processing are associated with deficits in other dorsal stream functions such as visuo-motor co-ordination and attentional control, a cluster we have called ‘dorsal stream vulnerability’. However, our neuroimaging measures related to motion coherence in typically developing children suggest that the critical areas for individual differences in global motion sensitivity are not early motion-processing areas such as V5/MT, but downstream parietal and frontal areas for decision processes on motion signals. Although these brain networks may also underlie attentional and visuo-motor deficits , we still do not know when and how these deficits differ across different disorders and between individual children. Answering these questions provide necessary steps, not only increasing our scientific understanding of human visual brain development, but also in designing appropriate interventions to help each child achieve their full potential.

SeminarNeuroscience

Motor Cortical Control of Vocal Interactions in a Neotropical Singing Mouse

Arkarup Banerjee
NYU Langone medical center
Sep 8, 2020

Using sounds for social interactions is common across many taxa. Humans engaged in conversation, for example, take rapid turns to go back and forth. This ability to act upon sensory information to generate a desired motor output is a fundamental feature of animal behavior. How the brain enables such flexible sensorimotor transformations, for example during vocal interactions, is a central question in neuroscience. Seeking a rodent model to fill this niche, we are investigating neural mechanisms of vocal interaction in Alston’s singing mouse (Scotinomys teguina) – a neotropical rodent native to the cloud forests of Central America. We discovered sub-second temporal coordination of advertisement songs (counter-singing) between males of this species – a behavior that requires the rapid modification of motor outputs in response to auditory cues. We leveraged this natural behavior to probe the neural mechanisms that generate and allow fast and flexible vocal communication. Using causal manipulations, we recently showed that an orofacial motor cortical area (OMC) in this rodent is required for vocal interactions (Okobi*, Banerjee* et. al, 2019). Subsequently, in electrophysiological recordings, I find neurons in OMC that track initiation, termination and relative timing of songs. Interestingly, persistent neural dynamics during song progression stretches or compresses on every trial to match the total song duration (Banerjee et al, in preparation). These results demonstrate robust cortical control of vocal timing in a rodent and upends the current dogma that motor cortical control of vocal output is evolutionarily restricted to the primate lineage.

SeminarPhysics of Life

Coordination of cell volume with biomass growth in bacteria

Sven van Teeffelen
Institut Pasteur, France
Jul 27, 2020
SeminarNeuroscienceRecording

Geometry of Neural Computation Unifies Working Memory and Planning

John D. Murray
Yale University School of Medicine
Jun 17, 2020

Cognitive tasks typically require the integration of working memory, contextual processing, and planning to be carried out in close coordination. However, these computations are typically studied within neuroscience as independent modular processes in the brain. In this talk I will present an alternative view, that neural representations of mappings between expected stimuli and contingent goal actions can unify working memory and planning computations. We term these stored maps contingency representations. We developed a "conditional delayed logic" task capable of disambiguating the types of representations used during performance of delay tasks. Human behaviour in this task is consistent with the contingency representation, and not with traditional sensory models of working memory. In task-optimized artificial recurrent neural network models, we investigated the representational geometry and dynamical circuit mechanisms supporting contingency-based computation, and show how contingency representation explains salient observations of neuronal tuning properties in prefrontal cortex. Finally, our theory generates novel and falsifiable predictions for single-unit and population neural recordings.

SeminarNeuroscienceRecording

Neural control of vocal interactions in songbirds

Daniela Vallentin
Max Planck Institute for Ornithology
May 14, 2020

During conversations we rapidly switch between listening and speaking which often requires withholding or delaying our speech in order to hear others and avoid overlapping. This capacity for vocal turn-taking is exhibited by non-linguistic species as well, however the neural circuit mechanisms that enable us to regulate the precise timing of our vocalizations during interactions are unknown. We aim to identify the neural mechanisms underlying the coordination of vocal interactions. Therefore, we paired zebra finches with a vocal robot (1Hz call playback) and measured the bird’s call response times. We found that individual birds called with a stereotyped delay in respect to the robot call. Pharmacological inactivation of the premotor nucleus HVC revealed its necessity for the temporal coordination of calls. We further investigated the contributing neural activity within HVC by performing intracellular recordings from premotor neurons and inhibitory interneurons in calling zebra finches. We found that inhibition is preceding excitation before and during call onset. To test whether inhibition guides call timing we pharmacologically limited the impact of inhibition on premotor neurons. As a result zebra finches converged on a similar delay time i.e. birds called more rapidly after the vocal robot call suggesting that HVC inhibitory interneurons regulate the coordination of social contact calls. In addition, we aim to investigate the vocal turn-taking capabilities of the common nightingale. Male nightingales learn over 100 different song motifs which are being used in order to attract mates or defend territories. Previously, it has been shown that nightingales counter-sing with each other following a similar temporal structure to human vocal turn-taking. These animals are also able to spontaneously imitate a motif of another nightingale. The neural mechanisms underlying this behaviour are not yet understood. In my lab, we further probe the capabilities of these animals in order to access the dynamic range of their vocal turn taking flexibility.

SeminarNeuroscienceRecording

The subcellular organization of excitation and inhibition underlying high-fidelity direction coding in the retina

Gautam Awatramani
University of Victoria
May 10, 2020

Understanding how neural circuits in the brain compute information not only requires determining how individual inhibitory and excitatory elements of circuits are wired together, but also a detailed knowledge of their functional interactions. Recent advances in optogenetic techniques and mouse genetics now offer ways to specifically probe the functional properties of neural circuits with unprecedented specificity. Perhaps one of the most heavily interrogated circuits in the mouse brain is one in the retina that is involved in coding direction (reviewed by Mauss et al., 2017; Vaney et al., 2012). In this circuit, direction is encoded by specialized direction-selective (DS) ganglion cells (DSGCs), which respond robustly to objects moving in a ‘preferred’ direction but not in the opposite or ‘null’ direction (Barlow and Levick, 1965). We now know this computation relies on the coordination of three transmitter systems: glutamate, GABA and acetylcholine (ACh). In this talk, I will discuss the synaptic mechanisms that produce the spatiotemporal patterns of inhibition and excitation that are crucial for shaping directional selectivity. Special emphasis will be placed on the role of ACh, as it is unclear whether it is mediated by synaptic or non-synaptic mechanisms, which is in fact a central issue in the CNS. Barlow, H.B., and Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. J Physiol 178, 477-504. Mauss, A.S., Vlasits, A., Borst, A., and Feller, M. (2017). Visual Circuits for Direction Selectivity. Annu Rev Neurosci 40, 211-230. Vaney, D.I., Sivyer, B., and Taylor, W.R. (2012). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194-208

ePoster

Force coupling leads to neural coordination via enviromental feedback

Claudius Gros, Elias Fischer, Bulcsu Sandor

Bernstein Conference 2024

ePoster

Dynamics of interhemispheric prefrontal coordination underlying serial dependence in working memory

COSYNE 2022

ePoster

The emergence of fixed points in interlimb coordination underlies the learning of novel gaits in mice

COSYNE 2022

ePoster

Faithful encoding of interlimb coordination by individual Purkinje cells during locomotion

COSYNE 2022

ePoster

Causal role of PFC-M1 coordination during sleep in long-term motor memory consolidation

Jaekyung Kim, Linmeng He, Karunesh Ganguly

FENS Forum 2024

ePoster

Dynamic mechanism of adaptive interlimb coordination in cat locomotion

Kota Shinohara, Yuichi Ambe, Yongi Kim, Simon Danner, Shravan Ramalingasetty, Andrew Lockhart, Sergey Markin, Jessica Ausborn, Ilya Rybak, Shinya Aoi

FENS Forum 2024

ePoster

Effect of psychotomimetic dizocilpine on coordination of place and time representations in rats

Eduard Kelemen, Tereza Rydzykova, Ewa Szczurowska

FENS Forum 2024

ePoster

Extracellular vesicles from MSCs reverse neuroinflammation in cerebellum and restore motor coordination in hyperammonemic rats

Paula Izquierdo-Altarejos, Mar Martínez-García, Iván Atienza-Pérez, Alberto Hernández, Victoria Moreno-Manzano, Vicente Felipo

FENS Forum 2024

ePoster

Gal3 suppression delays the motor coordination loss in the ataxic tambaleante mouse model

Rocío Ruiz, Francisco Hernández-Rasco, Alberto Rivera-Ramos, Isabel M. Alonso-Bellido, Maria A. Roca-Ceballos, Irene García-Domínguez, María S. Letrán-Sánchez, Jesús Soldán-Hidalgo, Sara Bachiller, Ana M. Espinosa-Oliva, Rocío M. de Pablos, Eva M. Pérez-Villegas, Antonio J. Herrera, José A. Armengol, José L. Venero

FENS Forum 2024

ePoster

Local field potentials in macaque premotor cortex encode the strength of inter-individual motor coordination during joint action

Stefano Grasso, Lucia Sacheli, Eros Quarta, Laura Zapparoli, Eraldo Paulesu, Alexandra Battaglia Mayer

FENS Forum 2024

ePoster

Mentalising underlies strategic coordination in Guinea baboons (Papio papio)

Toan Nong, Nicolas Claidière, Joel Fagot, Rémi Philippe, Edmund Derrington, Jean-Claude Dreher

FENS Forum 2024

ePoster

Movement coordination via a cortico-ponto-thalamic loop

Emília Bősz, Viktor M. Plattner, Laszlo Biró, Kata Kóta, Marco A. Diana, Laszlo Acsady

FENS Forum 2024

ePoster

Postural constraints affect the optimal weighting of multisensory integration during visuo-manual coordination

Célie Dézé, Clémence Daleux, Mathieu Beraneck, Joseph McIntyre, Michele Tagliabue

FENS Forum 2024

ePoster

The role of afferent feedback in adaptive interlimb coordination in cat locomotion

Yuichi Ambe, Kota Shinohara, Yongi Kim, Simon Danner, Shravan Ramalingasetty, Andrew Lockhart, Sergey Markin, Jessica Ausborn, Ilya Rybak, Shinya Aoi

FENS Forum 2024

ePoster

Superior colliculus as a key player in Huntington’s disease sensorimotor coordination deficits: From circuits to behaviour

Melike Küçükerden, Sara Conde-Berriozabal, Laia Sitjà-Roqueta, Maryam Givehchi, Guadalupe Soria, Manuel Jose Rodríguez, Jordi Alberch, Mercè Masana

FENS Forum 2024

ePoster

Understanding the role of the hippocampal-thalamic-cortical coordination in memory consolidation

Muhang Li, Thomas McHugh

FENS Forum 2024

ePoster

Vocal-cardiorespiratory coordination during the learning process to volitionally vocalize in marmoset monkeys

Cristina Risueno Segovia, Rieko Setsuie, Masanori Matsuzaki

FENS Forum 2024