Corpus Callosum
corpus callosum
Department of Neuroscience, Washington University School of Medicine
Multiple electrophysiology positions available for neuroscientists with experience in in vivo electrophysiology or patch clamp techniques. Our laboratories are looking for passionate scientists with experience with either in vivo electrophysiology or patch clamp electrophysiology (recording and data analysis). Successful applicants will lead innovative experiments in which electrophysiology is a key method, analyze the data, and contribute to writing research papers and grant applications. We are committed to mentoring and offer a creative, thoughtful and collaborative scientific environment. Richards lab (https://sites.wustl.edu/richardslab/): We are seeking a creative scientist with experience in in vivo electrophysiological brain recordings such as local field potentials, multielectrode arrays, and/or in vivo single unit recordings and the analysis of these data. This project will investigate the formation of patterned activity throughout development and into adulthood in a new animal model, the marsupial fat-tailed dunnart. Chen lab (https://sites.wustl.edu/yaochenlab/): The projects aim to understand how the spatial and temporal features of key plasticity signals impact cellular and synaptic electrophysiology, as well as learning and memory. These experiments will be combined with optogenetics and two photon fluorescence lifetime imaging microscopy. We welcome experts in either patch clamp or in vivo electrophysiology, and we can train you for the rest. We welcome individuals who value rigor and craftsmanship, and will value your creativity in shaping the projects. Franken lab (https://sites.wustl.edu/frankenlab/): The electrophysiologist will lead experiments that aim to understand how the brain parses visual scenes into organized collections of objects. They will use advanced behavior, high-density electrode probes (e.g. Neuropixels) and optogenetics to understand how ensembles of neurons in cortical circuits perform these computations. We seek a creative scientist with prior expertise in electrophysiology, and look forward to train you in the other techniques. Our labs are members of the Department of Neuroscience at Washington University School of Medicine in St. Louis, a large and collaborative scientific community. WashU Neuroscience is consistently ranked as one of the top 10 places worldwide for neuroscience research. Additional information on being a postdoc at Washington University in St. Louis can be found at https://postdoc.wustl.edu/prospective-postdocs/ St. Louis is a city rich in culture, green spaces, free museums, world-class restaurants, and thriving music and arts scene. On top of it all, St. Louis is affordable and commuting to Washington University’s campuses is stress-free, whether you go by foot, bike, public transit, or car. The area combines the attractions of a major city with affordable lifestyle opportunities (https://medicine.wustl.edu/about/st-louis/). Washington University is dedicated to building a diverse community of individuals who are committed to contributing to an inclusive environment – fostering respect for all and welcoming individuals from diverse backgrounds, experiences and perspectives. Individuals with a commitment to these values are encouraged to apply. Minimum education & experience The appointee will have earned a Master’s degree or Ph.D. by the time of starting the appointment. Applicants should submit their CV and a cover letter explaining their background and interest in the position to Dr. Linda Richards (linda.richards@wustl.edu), Dr. Yao Chen (yaochen@wustl.edu), or Dr. Tom Franken (ftom@wustl.edu).
Seizure control by electrical stimulation: parameters and mechanisms
Seizure suppression by deep brain stimulation (DBS) applies high frequency stimulation (HFS) to grey matter to block seizures. In this presentation, I will present the results of a different method that employs low frequency stimulation (LFS) (1 to 10Hz) of white matter tracts to prevent seizures. The approach has been shown to be effective in the hippocampus by stimulating the ventral and dorsal hippocampal commissure in both animal and human studies respectively for mesial temporal lobe seizures. A similar stimulation paradigm has been shown to be effective at controlling focal cortical seizures in rats with corpus callosum stimulation. This stimulation targets the axons of the corpus callosum innervating the focal zone at low frequencies (5 to 10Hz) and has been shown to significantly reduce both seizure and spike frequency. The mechanisms of this suppression paradigm have been elucidated with in-vitro studies and involve the activation of two long-lasting inhibitory potentials GABAB and sAHP. LFS mechanisms are similar in both hippocampus and cortical brain slices. Additionally, the results show that LFS does not block seizures but rather decreases the excitability of the tissue to prevent seizures. Three methods of seizure suppression, LFS applied to fiber tracts, HFS applied to focal zone and stimulation of the anterior nucleus of the thalamus (ANT) were compared directly in the same animal in an in-vivo epilepsy model. The results indicate that LFS generated a significantly higher level of suppression, indicating LFS of white matter tract could be a useful addition as a stimulation paradigm for the treatment of epilepsy.
The wonders and complexities of brain microstructure: Enabling biomedical engineering studies combining imaging and models
Brain microstructure plays a key role in driving the transport of drug molecules directly administered to the brain tissue as in Convection-Enhanced Delivery procedures. This study reports the first systematic attempt to characterize the cytoarchitecture of commissural, long association and projection fiber, namely: the corpus callosum, the fornix and the corona radiata. Ovine samples from three different subjects have been imaged using scanning electron microscope combined with focused ion beam milling. Particular focus has been given to the axons. For each tract, a 3D reconstruction of relatively large volumes (including a significant number of axons) has been performed. Namely, outer axonal ellipticity, outer axonal cross-sectional area and its relative perimeter have been measured. This study [1] provides useful insight into the fibrous organization of the tissue that can be described as composite material presenting elliptical tortuous tubular fibers, leading to a workflow to enable accurate simulations of drug delivery which include well-resolved microstructural features. As a demonstration of the use of these imaging and reconstruction techniques, our research analyses the hydraulic permeability of two white matter (WM) areas (corpus callosum and fornix) whose three-dimensional microstructure was reconstructed starting from the acquisition of the electron microscopy images. Considering that the white matter structure is mainly composed of elongated and parallel axons we computed the permeability along the parallel and perpendicular directions using computational fluid dynamics [2]. The results show a statistically significant difference between parallel and perpendicular permeability, with a ratio about 2 in both the white matter structures analysed, thus demonstrating their anisotropic behaviour. This is in line with the experimental results obtained using perfusion of brain matter [3]. Moreover, we find a significant difference between permeability in corpus callosum and fornix, which suggests that also the white matter heterogeneity should be considered when modelling drug transport in the brain. Our findings, that demonstrate and quantify the anisotropic and heterogeneous character of the white matter, represent a fundamental contribution not only for drug delivery modelling but also for shedding light on the interstitial transport mechanisms in the extracellular space. These and many other discoveries will be discussed during the talk." "1. https://www.researchsquare.com/article/rs-686577/v1, 2. https://www.pnas.org/content/118/36/e2105328118, 3. https://ieeexplore.ieee.org/abstract/document/9198110
Molecular and activity-dependent mechanisms of cortical development underlying corpus callosum dysgenesis
Common developmental mechanisms underlie multiple brain disorders linked to corpus callosum dysgenesis. (Simultaneous translation to Spanish)
The corpus callosum is the largest fibre tract in the brain of placental mammals and connects the two cerebral hemispheres. Corpus callosum dysgenesis is a developmental brain disorder that is commonly genetic and occurs in approximately 1:4000 live births. It is easily diagnosed by MRI or prenatal ultrasound and is found in isolation or together with other brain anomalies, or with other organ system defects in a large number of different congenital syndromes. Callosal dysgenesis is a structural brain wiring disorder that can impact brain function and cognition in heterogeneous ways. We aim to understand how early developmental mechanisms lead to circuit alterations that ultimately impact behaviour and cognition. Translated to Spanish by MD and Medical interpreter Trinidad Ott. El cuerpo calloso es el tracto de fibras más grande del cerebro de los mamíferos placentarios y conecta los dos hemisferios cerebrales. La disgenesia del cuerpo calloso es un trastorno del desarrollo del cerebro que comunmente es genético y ocurre en aproximadamente 1: 4000 nacidos vivos. Se diagnostica fácilmente mediante resonancia magnética o ecografía prenatal y se encuentra aislado o junto con otras anomalías cerebrales, o con otros defectos del sistema de órganos en un gran número de síndromes congénitos diferentes. La disgenesia callosa es un trastorno estructural del cableado cerebral que puede afectar la función cerebral y la cognición de formas heterogéneas. Nuestro objetivo es comprender cómo los primeros mecanismos del desarrollo conducen a alteraciones en los circuitos que, en última instancia, afectan el comportamiento y la cognición. Traducción al español por la Doctora e Intérprete Médica Trinidad Ott.
3-Photon in vivo imaging reveals breakdown of microglia surveillance upon glioma invasion in the corpus callosum
FENS Forum 2024
Altered metabolism in the aged corpus callosum could be related to the loss of myelin and axons
FENS Forum 2024
Exploring the influence of maternal prenatal depressive symptoms and hair cortisol concentration on infant corpus callosum integrity
FENS Forum 2024