← Back

Crawling

Topic spotlight
TopicWorld Wide

crawling

Discover seminars, jobs, and research tagged with crawling across World Wide.
4 curated items4 Seminars
Updated over 4 years ago
4 items · crawling
4 results
SeminarPhysics of LifeRecording

Swimming and crawling of Euglena gracilis: a tale with many twists

Antonio De Simone
SISSA
Jun 8, 2021

Euglena gracilis is an interesting unicellular protist, also because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as “metaboly”, or “amoeboid motion”). Swimming trajectories are helical. The are powered by the beating of a single emerging flagellum, which spans non-planar waveforms in the shape of a twisted lasso. Finally the harmoniously coordinated shape changes that make metaboly possible, reminiscent of peristaltic waves, arise form the relative sliding of its pellicle strips, resulting in twisted helical bundles. We will report on the most recent findings on these interconnected topics, for which helical shapes provide a striking fil rouge.

SeminarPhysics of LifeRecording

Flow, fluctuate and freeze: Epithelial cell sheets as soft active matter

Silke Henkes
University of Bristol
Sep 15, 2020

Epithelial cell sheets form a fundamental role in the developing embryo, and also in adult tissues including the gut and the cornea of the eye. Soft and active matter provides a theoretical and computational framework to understand the mechanics and dynamics of these tissues.I will start by introducing the simplest useful class of models, active brownian particles (ABPs), which incorporate uncoordinated active crawling over a substrate and mechanical interactions. Using this model, I will show how the extended ’swirly’ velocity fluctuations seen in sheets on a substrate can be understood using a simple model that couples linear elasticity with disordered activity. We are able to quantitatively match experiments using in-vitro corneal epithelial cells.Adding a different source of activity, cell division and apoptosis, to such a model leads to a novel 'self-melting' dense fluid state. Finally, I will discuss a direct application of this simple particle-based model to the steady-state spiral flow pattern on the mouse cornea.