← Back

Creativity

Topic spotlight
TopicWorld Wide

creativity

Discover seminars, jobs, and research tagged with creativity across World Wide.
19 curated items17 Seminars2 Positions
Updated 1 day ago
19 items · creativity
19 results
PositionNeuroscience

Prof. Dr. Tobias Rose

University Hospital Bonn, Institute of Experimental Epileptology and Cognition Research
Bonn, Nordrhein-Westfalen, Germany
Dec 5, 2025

The selected candidate will investigate the 'Encoding of Landmark Stability and Stability of Landmark Encoding'. You will study visual landmark encoding at the intersection of hippocampal, thalamic, and cortical inputs to retrosplenial cortex. You will use cutting-edge miniature two-photon Ca2+ imaging, enabling you to longitudinally record activity in defined, large neuronal populations and long-range afferents in freely moving animals. You will carry out rigorous neuronal and behavioral analyses within the confines of automatized closed-loop tasks tailored for visual navigation. This will involve the application of advanced tools for dense behavioral quantification, including multi-angle videography, inertial motion sensing, and egocentric recording with head-mounted cameras for the reconstruction of retinal input. Our aim is to gain a comprehensive understanding of the immediate and sustained multi-area neuronal representation of visual landmarks during unrestricted behavior. We aim to elucidate the mechanisms through which stable visual landmarks are encoded and the processes by which these representations are stabilized to facilitate robust allocentric navigation.

Position

Brad Wyble

The Pennsylvania State University
University Park, PA
Dec 5, 2025

The Department of Psychology at The Pennsylvania State University, University Park, PA, invites applications for a full-time Assistant or Associate Professor of Cognitive Psychology with anticipated start date of August, 2025. Areas of specialization within cognitive psychology are open and may include (but are not limited to) such topics as cognitive control, creativity, computational approaches and modelling, motor control, language science, memory, attention, perception, and decision making. A record of collaboration is desirable for both ranks. Substantial collaboration opportunities exist within the department that align with the department’s cross-cutting research themes and across campus. Current faculty in the cognitive area are active in units including the Center for Language Sciences, the Social Life and Engineering Sciences Imaging Center, the Center for Healthy Aging, the Center for Brain, Behavior, and Cognition and the Applied Research Lab. Responsibilities of the Assistant or Associate Professor of Cognitive Psychology include maintaining a strong record of publications in top outlets. This position will include resident instruction at the undergraduate and graduate level and normal university service, based on the candidate’s qualifications. A Ph.D. in Psychology or related field is required by the appointment date for both ranks. Candidates for the tenure-track Assistant Professor of Cognitive Psychology position must have demonstrated ability as a researcher, scholar, and teacher in a relevant field and have evidence of growth in scholarly achievement. Duties will involve a combination of teaching, research, and service, based on the candidate’s qualifications. Candidates for the tenure-track Associate Professor of Cognitive Psychology position must have demonstrated excellence as a researcher, scholar, and teacher in a relevant field and have an established reputation in scholarly achievement. Duties will involve a combination of teaching, research, and service, based on the candidate’s qualifications. The ideal candidate will have a strong record of publications in top outlets and have a history of or potential for external funding. In addition, successful candidates must either have demonstrated a commitment to building an inclusive, equitable, and diverse campus community, or describe one or more ways they would envision doing so, given the opportunity. Review of applications will begin immediately and will continue until the position is filled. Interested candidates should submit an online application at Penn State’s Job Posting Board, and should upload the following application materials electronically: (1) a Cover letter of application, (2) Concise statements of research and teaching interests, (3) a CV and (4) three selected (re)prints. System limitations allow for a total of 5 documents (5mb per document) as part of your application. Please combine materials to meet the 5-document limit. In addition, please arrange to have three letters of recommendation sent electronically to PsychApplications@psu.edu with the subject line: “Cognitive Psychology” Questions regarding the application process can be emailed to PsychApplications@psu.edu and questions regarding the position can be sent to the search chair: cogsearch@psu.edu. The Pennsylvania State University is committed to and accountable for advancing diversity, equity, and inclusion in all of its forms. We embrace individual uniqueness, foster a culture of inclusion that supports both broad and specific diversity initiatives, leverage the educational and institutional benefits of diversity, and engage all individuals to help them thrive. We value inclusion as a core strength and an essential element of our public service mission. Penn State offers competitive benefits to full-time employees, including medical, dental, vision, and retirement plans, in addition to 75% tuition discounts (including for a spouse and dependent children up to the age of 26) and paid holidays.

SeminarNeuroscience

Using Adversarial Collaboration to Harness Collective Intelligence

Lucia Melloni
Max Planck Institute for Empirical Aesthetics
Jan 24, 2024

There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.

SeminarNeuroscienceRecording

How Children Design by Analogy: The Role of Spatial Thinking

Caiwei Zhu
Delft University of Technology
Mar 15, 2023

Analogical reasoning is a common reasoning tool for learning and problem-solving. Existing research has extensively studied children’s reasoning when comparing, or choosing from ready-made analogies. Relatively less is known about how children come up with analogies in authentic learning environments. Design education provides a suitable context to investigate how children generate analogies for creative learning purposes. Meanwhile, the frequent use of visual analogies in design provides an additional opportunity to understand the role of spatial reasoning in design-by-analogy. Spatial reasoning is one of the most studied human cognitive factors and is critical to the learning of science, technology, engineering, arts, and mathematics (STEAM). There is growing interest in exploring the interplay between analogical reasoning and spatial reasoning. In this talk, I will share qualitative findings from a case study, where a class of 11-to-12-year-olds in the Netherlands participated in a biomimicry design project. These findings illustrate (1) practical ways to support children’s analogical reasoning in the ideation process and (2) the potential role of spatial reasoning as seen in children mapping form-function relationships in nature analogically and adaptively to those in human designs.

SeminarPsychology

Adaptation via innovation in the animal kingdom

Kata Horváth
Eötvös Loránd University & Lund University
Nov 23, 2022

Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.

SeminarNeuroscienceRecording

Do large language models solve verbal analogies like children do?

Claire Stevenson
University of Amsterdam
Nov 16, 2022

Analogical reasoning –learning about new things by relating it to previous knowledge– lies at the heart of human intelligence and creativity and forms the core of educational practice. Children start creating and using analogies early on, making incredible progress moving from associative processes to successful analogical reasoning. For example, if we ask a four-year-old “Horse belongs to stable like chicken belongs to …?” they may use association and reply “egg”, whereas older children will likely give the intended relational response “chicken coop” (or other term to refer to a chicken’s home). Interestingly, despite state-of-the-art AI-language models having superhuman encyclopedic knowledge and superior memory and computational power, our pilot studies show that these large language models often make mistakes providing associative rather than relational responses to verbal analogies. For example, when we asked four- to eight-year-olds to solve the analogy “body is to feet as tree is to …?” they responded “roots” without hesitation, but large language models tend to provide more associative responses such as “leaves”. In this study we examine the similarities and differences between children's and six large language models' (Dutch/multilingual models: RobBERT, BERT-je, M-BERT, GPT-2, M-GPT, Word2Vec and Fasttext) responses to verbal analogies extracted from an online adaptive learning environment, where >14,000 7-12 year-olds from the Netherlands solved 20 or more items from a database of 900 Dutch language verbal analogies.

SeminarNeuroscienceRecording

Exploration-Based Approach for Computationally Supported Design-by-Analogy

Hyeonik Song
Texas A&M University
Jul 7, 2022

Engineering designers practice design-by-analogy (DbA) during concept generation to retrieve knowledge from external sources or memory as inspiration to solve design problems. DbA is a tool for innovation that involves retrieving analogies from a source domain and transferring the knowledge to a target domain. While DbA produces innovative results, designers often come up with analogies by themselves or through serendipitous, random encounters. Computational support systems for searching analogies have been developed to facilitate DbA in systematic design practice. However, many systems have focused on a query-based approach, in which a designer inputs a keyword or a query function and is returned a set of algorithmically determined stimuli. In this presentation, a new analogical retrieval process that leverages a visual interaction technique is introduced. It enables designers to explore a space of analogies, rather than be constrained by what’s retrieved by a query-based algorithm. With an exploration-based DbA tool, designers have the potential to uncover more useful and unexpected inspiration for innovative design solutions.

SeminarNeuroscienceRecording

The neural basis of flexible semantic cognition (BACN Mid-career Prize Lecture 2022)

Elizabeth Jefferies
Department of Psychology, University of York, UK
May 24, 2022

Semantic cognition brings meaning to our world – it allows us to make sense of what we see and hear, and to produce adaptive thoughts and behaviour. Since we have a wealth of information about any given concept, our store of knowledge is not sufficient for successful semantic cognition; we also need mechanisms that can steer the information that we retrieve so it suits the context or our current goals. This talk traces the neural networks that underpin this flexibility in semantic cognition. It draws on evidence from multiple methods (neuropsychology, neuroimaging, neural stimulation) to show that two interacting heteromodal networks underpin different aspects of flexibility. Regions including anterior temporal cortex and left angular gyrus respond more strongly when semantic retrieval follows highly-related concepts or multiple convergent cues; the multivariate responses in these regions correspond to context-dependent aspects of meaning. A second network centred on left inferior frontal gyrus and left posterior middle temporal gyrus is associated with controlled semantic retrieval, responding more strongly when weak associations are required or there is more competition between concepts. This semantic control network is linked to creativity and also captures context-dependent aspects of meaning; however, this network specifically shows more similar multivariate responses across trials when association strength is weak, reflecting a common controlled retrieval state when more unusual associations are the focus. Evidence from neuropsychology, fMRI and TMS suggests that this semantic control network is distinct from multiple-demand cortex which supports executive control across domains, although challenging semantic tasks recruit both networks. The semantic control network is juxtaposed between regions of default mode network that might be sufficient for the retrieval of strong semantic relationships and multiple-demand regions in the left hemisphere, suggesting that the large-scale organisation of flexible semantic cognition can be understood in terms of cortical gradients that capture systematic functional transitions that are repeated in temporal, parietal and frontal cortex.

SeminarNeuroscienceRecording

Understanding and Enhancing Creative Analogical Reasoning

Robert Cortes
Georgetown University
Dec 15, 2021

This talk will focus on our lab's extensive research on understanding and enhancing creative analogical reasoning. I will cover the development of the analogy finding matrix task, evidence for conscious augmentation of creative state during this task, and the real-world implications this ability has for college STEM education. I will also discuss recent research aimed at enhancing performance on this creative analogical reasoning task using both transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS).

SeminarNeuroscienceRecording

Storythinking: Why Your Brain is Creative in Ways that Computer AI Can't Ever Be

Angus Fletcher
Ohio State
Aug 31, 2021

Computer AI thinks differently from us, which is why it's such a useful tool. Thanks to the ingenuity of human programmers, AI's different method of thinking has made humans redundant at certain human tasks, such as chess. Yet there are mechanical limits to how far AI can replicate the products of human thinking. In this talk, we'll trace one such limit by exploring how AI and humans create differently. Humans create by reverse-engineering tools or behaviors to accomplish new actions. AI creates by mix-and-matching pieces of preexisting structures and labeling which combos are associated with positive and negative results. This different procedure is why AI cannot (and will never) learn to innovate technology or tactics and why it also cannot (and will never) learn to generate narratives (including novels, business plans, and scientific hypotheses). It also serves as a case study in why there's no reason to believe in "general intelligence" and why computer AI would have to partner with other mechanical forms of AI (run on non-computer hardware that, as of yet, does not exist, and would require humans to invent) for AI to take over the globe.

SeminarNeuroscienceRecording

Conceptual Change Induced by Analogical Reasoning Sparks “Aha!” Moments

Christine Chesebrough
Drexel University
Jul 21, 2021

Although analogical reasoning has been assumed to involve insight and its associated “aha!” experience, the relationship between these phenomena has never been directly probed empirically. In this study we investigated the relationship between representational change and the “aha!” experience during analogical reasoning. A novel set of verbal analogy stimuli were developed for use as an insight task. Across two experiments, participants reported significantly stronger aha moments and showed greater evidence of representational change on trials with more semantically distant analogies. Further, the strength of reported aha moments was correlated with the degree to which participants’ descriptions of the analogies changed over the course of each trial. Lastly, we probed the individual differences associated with a tendency to report stronger "aha" experiences, particularly related to mood, curiosity, and reward responsiveness. The findings shed light on the affective components of analogical reasoning and suggest that measuring affective responses during such tasks may elucidate novel insights into the mechanisms of creative analogical reasoning.

SeminarNeuroscience

CrossTalk Event with Susan Rogers & Ed Robertson

Susan Rogers
Berklee College of Music
Mar 16, 2021

Join us for a conversation on the neuroscience of music, composition and song writing!

SeminarNeuroscienceRecording

Context and Comparison During Open-Ended Induction

Robert Goldstone
Indiana University, Bloomington
Jan 20, 2021

A key component of humans' striking creativity in solving problems is our ability to construct novel descriptions to help us characterize novel categories. Bongard problems, which challenge the problem solver to come up with a rule for distinguishing visual scenes that fall into two categories, provide an elegant test of this ability. Bongard problems are challenging for both human and machine category learners because only a handful of example scenes are presented for each category, and they often require the open-ended creation of new descriptions. A new sub-type of Bongard problem called Physical Bongard Problems (PBPs) is introduced, which require solvers to perceive and predict the physical spatial dynamics implicit in the depicted scenes. The PATHS (Perceiving And Testing Hypotheses on Structures) computational model which can solve many PBPs is presented, and compared to human performance on the same problems. PATHS and humans are similarly affected by the ordering of scenes within a PBP, with spatially and temporally juxtaposed scenes promoting category learning when they are similar and belong to different categories, or dissimilar and belong to the same category. The core theoretical commitments of PATHS which we believe to also exemplify human open-ended category learning are a) the continual perception of new scene descriptions over the course of category learning; b) the context-dependent nature of that perceptual process, in which the scenes establish the context for one another; c) hypothesis construction by combining descriptions into logical expressions; and d) bi-directional interactions between perceiving new aspects of scenes and constructing hypotheses for the rule that distinguishes categories.

SeminarNeuroscienceRecording

Brain-Body Music Interfaces for Creativity, Education and Well-being

Grace Leslie
Georgia Institute of Technology
Aug 11, 2020

The Georgia Tech Brain Music Lab is a community gathered around a unique facility combining EEG and other physiological measurement techniques with new music technologies. Their mission is to engage in research and creative practice that brings health and well-being. This talk will present an overview of the activities at the Brain Music Lab, including sonification of physiological signals, acoustic design for health and well-being, therapeutic applications of musical stimulation, and brain-body music performance.

SeminarNeuroscience

Sleep, semantic memory, and creative problem solving

Penelope Lewis
Cardiff University Brain Research Imaging Centre
Mar 17, 2020

Creative thought relies on the reorganisation of existing knowledge. Sleep is known to be important for creative thinking, but there is a debate about which sleep stage is most relevant, and why. I will address this issue by proposing that Rapid Eye Movement sleep, or 'REM', and Non-REM sleep facilitate creativity in different ways. Memory replay mechanisms in Non-REM can abstract rules from corpuses of learned information, while replay in REM may promote novel associations. I propose that the iterative interleaving of REM and Non-REM across a night boosts the formation of complex knowledge frameworks, and allows these frameworks to be restructured - thus facilitating creative thought. My talk will discuss experiments exploring these hypotheses, and the mechanisms for these processes.