Curiosity
curiosity
Feedback-induced dispositional changes in risk preferences
Contrary to the original normative decision-making standpoint, empirical studies have repeatedly reported that risk preferences are affected by the disclosure of choice outcomes (feedback). Although no consensus has yet emerged regarding the properties and mechanisms of this effect, a widespread and intuitive hypothesis is that repeated feedback affects risk preferences by means of a learning effect, which alters the representation of subjective probabilities. Here, we ran a series of seven experiments (N= 538), tailored to decipher the effects of feedback on risk preferences. Our results indicate that the presence of feedback consistently increases risk-taking, even when the risky option is economically less advantageous. Crucially, risk-taking increases just after the instructions, before participants experience any feedback. These results challenge the learning account, and advocate for a dispositional effect, induced by the mere anticipation of feedback information. Epistemic curiosity and regret avoidance may drive this effect in partial and complete feedback conditions, respectively.
Decoding mental conflict between reward and curiosity in decision-making
Humans and animals are not always rational. They not only rationally exploit rewards but also explore an environment owing to their curiosity. However, the mechanism of such curiosity-driven irrational behavior is largely unknown. Here, we developed a decision-making model for a two-choice task based on the free energy principle, which is a theory integrating recognition and action selection. The model describes irrational behaviors depending on the curiosity level. We also proposed a machine learning method to decode temporal curiosity from behavioral data. By applying it to rat behavioral data, we found that the rat had negative curiosity, reflecting conservative selection sticking to more certain options and that the level of curiosity was upregulated by the expected future information obtained from an uncertain environment. Our decoding approach can be a fundamental tool for identifying the neural basis for reward–curiosity conflicts. Furthermore, it could be effective in diagnosing mental disorders.
How curiosity affects learning and information seeking via the dopaminergic circuit
Over the last decade, research on curiosity – the desire to seek new information – has been rapidly growing. Several studies have shown that curiosity elicits activity within the dopaminergic circuit and thereby enhances hippocampus-dependent learning. However, given this new field of research, we do not have a good understanding yet of (i) how curiosity-based learning changes across the lifespan, (ii) why some people show better learning improvements due to curiosity than others, and (iii) whether lab-based research on curiosity translates to how curiosity affects information seeking in real life. In this talk, I will present a series of behavioural and neuroimaging studies that address these three questions about curiosity. First, I will present findings on how curiosity and interest affect learning differently in childhood and adolescence. Second, I will show data on how inter-individual differences in the magnitude of curiosity-based learning depend on the strength of resting-state functional connectivity within the cortico-mesolimbic dopaminergic circuit. Third, I will present findings on how the level of resting-state functional connectivity within this circuit is also associated with the frequency of real-life information seeking (i.e., about Covid-19-related news). Together, our findings help to refine our recently proposed framework – the Prediction, Appraisal, Curiosity, and Exploration (PACE) framework – that attempts to integrate theoretical ideas on the neurocognitive mechanisms of how curiosity is elicited, and how curiosity enhances learning and information seeking. Furthermore, our findings highlight the importance of curiosity research to better understand how curiosity can be harnessed to improve learning and information seeking in real life.
Social Curiosity
In this lecture, I would like to share with the broad audience the empirical results gathered and the theoretical advancements made in the framework of the Lendület project entitled ’The cognitive basis of human sociality’. The main objective of this project was to understand the mechanisms that enable the unique sociality of humans, from the angle of cognitive science. In my talk, I will focus on recent empirical evidence in the study of three fundamental social cognitive functions (social categorization, theory of mind and social learning; mainly from the empirical lenses of developmental psychology) in order to outline a theory that emphasizes the need to consider their interconnectedness. The proposal is that the ability to represent the social world along categories and the capacity to read others’ minds are used in an integrated way to efficiently assess the epistemic states of fellow humans by creating a shared representational space. The emergence of this shared representational space is both the result of and a prerequisite to efficient learning about the physical and social environment.
Curiosity: Some understandings and many challenges
Growing Up in Academia with Onur Güntürkün
There are stories of resilience, passion, braveness and determination and the one of Onur Güntürkün. He has managed to beat the odds in so many ways, from moving countries, surviving the polio, establishing a new field against the advice of a senior professor and much more, all the while keeping a positive spirit, an endless curiosity and the braveness to keep going despite adversities. Join me on Monday, February 28, 2022, 6 p.m. (CET) for a Growing Up in Academia with Onur Güntürkün.
Conceptual Change Induced by Analogical Reasoning Sparks “Aha!” Moments
Although analogical reasoning has been assumed to involve insight and its associated “aha!” experience, the relationship between these phenomena has never been directly probed empirically. In this study we investigated the relationship between representational change and the “aha!” experience during analogical reasoning. A novel set of verbal analogy stimuli were developed for use as an insight task. Across two experiments, participants reported significantly stronger aha moments and showed greater evidence of representational change on trials with more semantically distant analogies. Further, the strength of reported aha moments was correlated with the degree to which participants’ descriptions of the analogies changed over the course of each trial. Lastly, we probed the individual differences associated with a tendency to report stronger "aha" experiences, particularly related to mood, curiosity, and reward responsiveness. The findings shed light on the affective components of analogical reasoning and suggest that measuring affective responses during such tasks may elucidate novel insights into the mechanisms of creative analogical reasoning.
A brain circuit for curiosity
Motivational drives are internal states that can be different even in similar interactions with external stimuli. Curiosity as the motivational drive for novelty-seeking and investigating the surrounding environment is for survival as essential and intrinsic as hunger. Curiosity, hunger, and appetitive aggression drive three different goal-directed behaviors—novelty seeking, food eating, and hunting— but these behaviors are composed of similar actions in animals. This similarity of actions has made it challenging to study novelty seeking and distinguish it from eating and hunting in nonarticulating animals. The brain mechanisms underlying this basic survival drive, curiosity, and novelty-seeking behavior have remained unclear. In spite of having well-developed techniques to study mouse brain circuits, there are many controversial and different results in the field of motivational behavior. This has left the functions of motivational brain regions such as the zona incerta (ZI) still uncertain. Not having a transparent, nonreinforced, and easily replicable paradigm is one of the main causes of this uncertainty. Therefore, we chose a simple solution to conduct our research: giving the mouse freedom to choose what it wants—double freeaccess choice. By examining mice in an experimental battery of object free-access double-choice (FADC) and social interaction tests—using optogenetics, chemogenetics, calcium fiber photometry, multichannel recording electrophysiology, and multicolor mRNA in situ hybridization—we uncovered a cell type–specific cortico-subcortical brain circuit of the curiosity and novelty-seeking behavior. We found in mice that inhibitory neurons in the medial ZI (ZIm) are essential for the decision to investigate an object or a conspecific. These neurons receive excitatory input from the prelimbic cortex to signal the initiation of exploration. This signal is modulated in the ZIm by the level of investigatory motivation. Increased activity in the ZIm instigates deep investigative action by inhibiting the periaqueductal gray region. A subpopulation of inhibitory ZIm neurons expressing tachykinin 1 (TAC1) modulates the investigatory behavior.
A reward-learning framework of knowledge acquisition
Recent years have seen a considerable surge of research on interest-based engagement, examining how and why people are engaged in activities without relying on extrinsic rewards. However, the field of inquiry has been somewhat segregated into three different research traditions which have been developed relatively independently --- research on curiosity, interest, and trait curiosity/interest. The current talk sets out an integrative perspective; the reward-learning framework of knowledge acquisition. This conceptual framework takes on the basic premise of existing reward-learning models of information seeking: that knowledge acquisition serves as an inherent reward, which reinforces people’s information-seeking behavior through a reward-learning process. However, the framework reveals how the knowledge-acquisition process is sustained and boosted over a long period of time in real-life settings, allowing us to integrate the different research traditions within reward-learning models. The framework also characterizes the knowledge-acquisition process with four distinct features that are not present in the reward-learning process with extrinsic rewards --- (1) cumulativeness, (2) selectivity, (3) vulnerability, and (4) under-appreciation. The talk describes some evidence from our lab supporting these claims.
A reward-learning framework of knowledge acquisition: How we can integrate the concepts of curiosity, interest, and intrinsic-extrinsic rewards
Recent years have seen a considerable surge of research on interest-based engagement, examining how and why people are engaged in activities without relying on extrinsic rewards. However, the field of inquiry has been somewhat segregated into three different research traditions which have been developed relatively independently -- research on curiosity, interest, and trait curiosity/interest. The current talk sets out an integrative perspective; the reward-learning framework of knowledge acquisition. This conceptual framework takes on the basic premise of existing reward-learning models of information seeking: that knowledge acquisition serves as an inherent reward, which reinforces people’s information-seeking behavior through a reward-learning process. However, the framework reveals how the knowledge-acquisition process is sustained and boosted over a long period of time in real-life settings, allowing us to integrate the different research traditions within reward-learning models. The framework also characterizes the knowledge-acquisition process with four distinct features that are not present in the reward-learning process with extrinsic rewards -- (1) cumulativeness, (2) selectivity, (3) vulnerability, and (4) under-appreciation. The talk describes some evidence from our lab supporting these claims.
Curiosity, Power, and the Shape of Inquiry
Attentional mechanisms in information seeking behaviors
The Desire to Know: Non-Instrumental Information Seeking in Mice
Animals are motivated to acquire knowledge. A particularly striking example is information seeking behavior: animals often seek out sensory cues that will inform them about the properties of uncertain future rewards, even when there is no way for them to use this information to influence the reward outcome, and even when this information comes at a considerable cost. Evidence from monkey electrophysiology and human fMRI studies suggests that orbitofrontal cortex and midbrain dopamine neurons represent the subjective value of knowledge during information seeking behavior. However, it remains unclear how the brain assigns value to information and how it integrates this with other incentives to drive behavior. We have therefore developed a task to test if information preferences are present in mice and study how informational value is imparted on stimuli. Mice are trained to enter a center port and receive an initial odor that instructs them to either go to an informative side port, go to an uninformative side port, or choose freely between them. The chosen side port then yields a second odor cue followed by a delayed probabilistic water reward. The informative port’s odor cue indicates whether the upcoming reward will be big or small. The uninformative port’s odor cue is uncorrelated with the trial outcome. Crucially, the two ports only differ in their odor cues, not in their water value since both offer identical probabilities of big and small rewards. We find that mice prefer the informative port. This preference is evident as a higher percentage choice of the informative port when given a free choice (67% +/- 1.7%, n = 14, p < 0.03), as well as by faster reaction times when instructed to go to the informative port (544ms +/- 21ms vs 795ms +/- 21ms, n = 14, p < 0.001). The preference for information is robust to within-animal reversals of informative and uninformative port locations, and, moreover, mice are willing to pay for information by choosing the informative port even if its reward amount is reduced to be substantially lower than the uninformative port. These behavioral observations suggest that odor stimuli are imparted with informational value as mice learn the information seeking task. We are currently imaging neural activity in orbitofrontal cortex with microendoscopes to identify changes in neural activity that may reflect value associated with the acquisition of knowledge.