Cytoskeleton
cytoskeleton
The tubulin code in neuron health and disease : focus on detyrosination
Active mechanics of sea star oocytes
The cytoskeleton has the remarkable ability to self-organize into active materials which underlie diverse cellular processes ranging from motility to cell division. Actomyosin is a canonical example of an active material, which generates cellularscale contractility in part through the forces exerted by myosin motors on actin filaments. While the molecular players underlying actomyosin contractility have been well characterized, how cellular-scale deformation in disordered actomyosin networks emerges from filament-scale interactions is not well understood. In this talk, I’ll present work done in collaboration with Sebastian Fürthauer and Nikta Fakhri addressing this question in vivo using the meiotic surface contraction wave seen in oocytes of the bat star Patiria miniata as a model system. By perturbing actin polymerization, we find that the cellular deformation rate is a nonmonotonic function of cortical actin density peaked near the wild type density. To understand this, we develop an active fluid model coarse-grained from filament-scale interactions and find quantitative agreement with the measured data. The model makes further predictions, including the surprising prediction that deformation rate decreases with increasing motor concentration. We test these predictions through protein overexpression and find quantitative agreement. Taken together, this work is an important step for bridging the molecular and cellular length scales for cytoskeletal networks in vivo.
Mechanisms of Axon Growth and Regeneration
Almost everybody that has seen neurons under a microscope for the first time is fascinated by their beauty and their complex shape. Early on during development, however, there are hardly any signs of their future complexity, but the neurons look round and simple. How do neurons develop their sophisticated structure? How do they initially generate domains that later have distinct function within neuronal circuits, such as the axon? And, can a better understanding of the underlying developmental mechanisms help us in pathological conditions, such as a spinal cord injury, to induce axons to regenerate? Here, I will talk about the cytoskeleton as a driving force for neuronal polarization. We will then explore how cytoskeletal changes help to reactivate the growth program of injured CNS axons to elicit axon regeneration after a spinal cord injury. Finally, we will discuss whether axon growth and synapse formation may be processes in neurons that might exclude each other. Following this developmental hypothesis, it will help us to generate a novel perspective on regeneration failure in the adult CNS, and how we can overcome this failure to induce axon regeneration. Thus, this talk will describe how we can exploit developmental mechanisms to induce axon regeneration after a spinal cord injury.
Destructive testing on the cytoskeleton: probing the mechanics of cell division by laser ablation
“The Mechanics of Non-Equilibrium Soft Interfaces”
At small length-scales, capillary effects are significant, and thus the mechanics of soft material interfaces may be dominated by solid surface stresses or liquid surface tensions. The balance between surface and bulk properties is described by an elasto-capillary length-scale, in which equilibrium interfacial energies are constant. However, at small length-scales in biological materials, including living cells and tissues, interfacial energies are not constant but are actively regulated and driven far from equilibrium. Thus, the balance between surface and bulk properties depends upon the distance from equilibrium. Here, we model the spreading (wetting) of living cell aggregates as ‘active droplets’, with a non-equilibrium surface tension that depends upon internal stress generated by the actomyosin cytoskeleton. Depending upon the extent of activity, droplet surface properties adapt to the mechanics of their surroundings. The impact of this adaptation challenges contemporary models of interfacial mechanics, including extensively used models of contact mechanics and wetting.
The many faces of KCC2 in the generation and suppression of seizures
KCC2, best known as the neuron-specific chloride extruder that sets the strength and polarity of GABAergic Cl-currents, is a multifunctional molecule which interacts with other ion-regulatory proteins and (structurally) with the neuronal cytoskeleton. Its multiple roles in the generation and suppression of seizures have been widely studied. In my talk, I will address some fundamental issues which are relevant in this field of research: What are EGABA shifts about? What is the role of KCC2 in shunting inhibition? What is meant by “the balance between excitation and inhibition” and, in this context, by the “NKCC1/KCC2 ratio”? Is down-regulation of KCC2 following neuronal trauma a manifestation of adaptive or maladaptive ionic plasticity? Under what conditions is K-Cl cotransport by KCC2 promoting seizures? Should we pay more attention to KCC2 as molecule involved in dendritic spine formation in brain areas such as the hippocampus? Most of these points are of potential importance also in the design of KCC2-targeting drugs and genetic manipulations aimed at combating seizures.
“Biophysics of Structural Plasticity in Postsynaptic Spines”
The ability of the brain to encode and store information depends on the plastic nature of the individual synapses. The increase and decrease in synaptic strength, mediated through the structural plasticity of the spine, are important for learning, memory, and cognitive function. Dendritic spines are small structures that contain the synapse. They come in a variety of shapes (stubby, thin, or mushroom-shaped) and a wide range of sizes that protrude from the dendrite. These spines are the regions where the postsynaptic biochemical machinery responds to the neurotransmitters. Spines are dynamic structures, changing in size, shape, and number during development and aging. While spines and synapses have inspired neuromorphic engineering, the biophysical events underlying synaptic and structural plasticity of single spines remain poorly understood. Our current focus is on understanding the biophysical events underlying structural plasticity. I will discuss recent efforts from my group — first, a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation and a series of spatial models to study the role of spine geometry and organelle location within the spine for calcium and cyclic AMP signaling. Second, I will discuss how mechanics of membrane-cytoskeleton interactions can give insight into spine shape region. And I will conclude with some new efforts in using reconstructions from electron microscopy to inform computational domains. I will conclude with how geometry and mechanics plays an important role in our understanding of fundamental biological phenomena and some general ideas on bio-inspired engineering.
“LIM Domain Proteins in Cell Mechanotransduction”
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will discuss our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains. We developed a screen to assess the force-dependent localization of LIM domain-containing region (LCR) from ~30 genes to the actin cytoskeleton and identified features common to their force-sensitive localization. Through in vitro reconstitution, we found that the LCR binds directly to mechanically stressed actin filaments. Moreover, the LCR from the fission yeast protein paxillin-like 1 is also mechanosensitive, suggesting force-sensitivity is highly conserved. We speculate that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Mechanical Homeostasis of the Actin Cytoskeleton
My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will describe how optogenetic control of RhoA GTPase is a powerful and versatile force spectroscopy approach of cytoskeletal assemblies and its recent use to probe repair response in actomyosin stress fibers. I will also describe our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains that bind exclusively to mechanically stressed actin filaments. Our results suggest that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.
Filamin A modulates dendritic branching via integrin-Akt axis and actin cytoskeleton
FENS Forum 2024
PTCHD1 modulates cytoskeleton remodeling through regulation of Rac1-PAK signaling pathway, consistent with neurodevelopmental disorders phenotype
FENS Forum 2024
Unraveling neuroinflammation and cytoskeleton dynamics in brain ischemia: Insights from an oxygen-glucose deprivation model of stroke in organotypic hippocampal cultures for anti-inflammatory strategies
FENS Forum 2024