Differences
differences
Spike train structure of cortical transcriptomic populations in vivo
The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.
Digital Traces of Human Behaviour: From Political Mobilisation to Conspiracy Narratives
Digital platforms generate unprecedented traces of human behaviour, offering new methodological approaches to understanding collective action, polarisation, and social dynamics. Through analysis of millions of digital traces across multiple studies, we demonstrate how online behaviours predict offline action: Brexit-related tribal discourse responds to real-world events, machine learning models achieve 80% accuracy in predicting real-world protest attendance from digital signals, and social validation through "likes" emerges as a key driver of mobilization. Extending this approach to conspiracy narratives reveals how digital traces illuminate psychological mechanisms of belief and community formation. Longitudinal analysis of YouTube conspiracy content demonstrates how narratives systematically address existential, epistemic, and social needs, while examination of alt-tech platforms shows how emotions of anger, contempt, and disgust correlate with violence-legitimating discourse, with significant differences between narratives associated with offline violence versus peaceful communities. This work establishes digital traces as both methodological innovation and theoretical lens, demonstrating that computational social science can illuminate fundamental questions about polarisation, mobilisation, and collective behaviour across contexts from electoral politics to conspiracy communities.
Deepfake emotional expressions trigger the uncanny valley brain response, even when they are not recognised as fake
Facial expressions are inherently dynamic, and our visual system is sensitive to subtle changes in their temporal sequence. However, researchers often use dynamic morphs of photographs—simplified, linear representations of motion—to study the neural correlates of dynamic face perception. To explore the brain's sensitivity to natural facial motion, we constructed a novel dynamic face database using generative neural networks, trained on a verified set of video-recorded emotional expressions. The resulting deepfakes, consciously indistinguishable from videos, enabled us to separate biological motion from photorealistic form. Results showed that conventional dynamic morphs elicit distinct responses in the brain compared to videos and photos, suggesting they violate expectations (n400) and have reduced social salience (late positive potential). This suggests that dynamic morphs misrepresent facial dynamism, resulting in misleading insights about the neural and behavioural correlates of face perception. Deepfakes and videos elicited largely similar neural responses, suggesting they could be used as a proxy for real faces in vision research, where video recordings cannot be experimentally manipulated. And yet, despite being consciously undetectable as fake, deepfakes elicited an expectation violation response in the brain. This points to a neural sensitivity to naturalistic facial motion, beyond conscious awareness. Despite some differences in neural responses, the realism and manipulability of deepfakes make them a valuable asset for research where videos are unfeasible. Using these stimuli, we proposed a novel marker for the conscious perception of naturalistic facial motion – Frontal delta activity – which was elevated for videos and deepfakes, but not for photos or dynamic morphs.
Comparing supervised learning dynamics: Deep neural networks match human data efficiency but show a generalisation lag
Recent research has seen many behavioral comparisons between humans and deep neural networks (DNNs) in the domain of image classification. Often, comparison studies focus on the end-result of the learning process by measuring and comparing the similarities in the representations of object categories once they have been formed. However, the process of how these representations emerge—that is, the behavioral changes and intermediate stages observed during the acquisition—is less often directly and empirically compared. In this talk, I'm going to report a detailed investigation of the learning dynamics in human observers and various classic and state-of-the-art DNNs. We develop a constrained supervised learning environment to align learning-relevant conditions such as starting point, input modality, available input data and the feedback provided. Across the whole learning process we evaluate and compare how well learned representations can be generalized to previously unseen test data. Comparisons across the entire learning process indicate that DNNs demonstrate a level of data efficiency comparable to human learners, challenging some prevailing assumptions in the field. However, our results also reveal representational differences: while DNNs' learning is characterized by a pronounced generalisation lag, humans appear to immediately acquire generalizable representations without a preliminary phase of learning training set-specific information that is only later transferred to novel data.
Error Consistency between Humans and Machines as a function of presentation duration
Within the last decade, Deep Artificial Neural Networks (DNNs) have emerged as powerful computer vision systems that match or exceed human performance on many benchmark tasks such as image classification. But whether current DNNs are suitable computational models of the human visual system remains an open question: While DNNs have proven to be capable of predicting neural activations in primate visual cortex, psychophysical experiments have shown behavioral differences between DNNs and human subjects, as quantified by error consistency. Error consistency is typically measured by briefly presenting natural or corrupted images to human subjects and asking them to perform an n-way classification task under time pressure. But for how long should stimuli ideally be presented to guarantee a fair comparison with DNNs? Here we investigate the influence of presentation time on error consistency, to test the hypothesis that higher-level processing drives behavioral differences. We systematically vary presentation times of backward-masked stimuli from 8.3ms to 266ms and measure human performance and reaction times on natural, lowpass-filtered and noisy images. Our experiment constitutes a fine-grained analysis of human image classification under both image corruptions and time pressure, showing that even drastically time-constrained humans who are exposed to the stimuli for only two frames, i.e. 16.6ms, can still solve our 8-way classification task with success rates way above chance. We also find that human-to-human error consistency is already stable at 16.6ms.
Gender, trait anxiety and attentional processing in healthy young adults: is a moderated moderation theory possible?
Three studies conducted in the context of PhD work (UNIL) aimed at proving evidence to address the question of potential gender differences in trait anxiety and executive control biases on behavioral efficacy. In scope were male and female non-clinical samples of adult young age that performed non-emotional tasks assessing basic attentional functioning (Attention Network Test – Interactions, ANT-I), sustained attention (Test of Variables of Attention, TOVA), and visual recognition abilities (Object in Location Recognition Task, OLRT). Results confirmed the intricate nature of the relationship between gender and health trait anxiety through the lens of their impact on processing efficacy in males and females. The possibility of a gendered theory in trait anxiety biases is discussed.
The Role of Cognitive Appraisal in the Relationship between Personality and Emotional Reactivity
Emotion is defined as a rapid psychological process involving experiential, expressive and physiological responses. These emerge following an appraisal process that involves cognitive evaluations of the environment assessing its relevance, implication, coping potential, and normative significance. It has been suggested that changes in appraisal processes lead to changes in the resulting emotional nature. Simultaneously, it was demonstrated that personality can be seen as a predisposition to feel more frequently certain emotions, but the personality-appraisal-emotional response chain is rarely fully investigated. The present project thus sought to investigate the extent to which personality traits influence certain appraisals, which in turn influence the subsequent emotional reactions via a systematic analysis of the link between personality traits of different current models, specific appraisals, and emotional response patterns at the experiential, expressive, and physiological levels. Major results include the coherence of emotion components clustering, and the centrality of the pleasantness, coping potential and consequences appraisals, in context; and the differentiated mediating role of cognitive appraisal in the relation between personality and the intensity and duration of an emotional state, and autonomic arousal, such as Extraversion-pleasantness-experience, and Neuroticism-powerlessness-arousal. Elucidating these relationships deepens our understanding of individual differences in emotional reactivity and spot routes of action on appraisal processes to modify upcoming adverse emotional responses, with a broader societal impact on clinical and non-clinical populations.
Characterizing the causal role of large-scale network interactions in supporting complex cognition
Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.
Modeling human brain development and disease: the role of primary cilia
Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.
Dyslexia, Rhythm, Language and the Developing Brain
Recent insights from auditory neuroscience provide a new perspective on how the brain encodes speech. Using these recent insights, I will provide an overview of key factors underpinning individual differences in children’s development of language and phonology, providing a context for exploring atypical reading development (dyslexia). Children with dyslexia are relatively insensitive to acoustic cues related to speech rhythm patterns. This lack of rhythmic sensitivity is related to the atypical neural encoding of rhythm patterns in speech by the brain. I will describe our recent data from infants as well as children, demonstrating developmental continuity in the key neural variables.
Unifying the mechanisms of hippocampal episodic memory and prefrontal working memory
Remembering events in the past is crucial to intelligent behaviour. Flexible memory retrieval, beyond simple recall, requires a model of how events relate to one another. Two key brain systems are implicated in this process: the hippocampal episodic memory (EM) system and the prefrontal working memory (WM) system. While an understanding of the hippocampal system, from computation to algorithm and representation, is emerging, less is understood about how the prefrontal WM system can give rise to flexible computations beyond simple memory retrieval, and even less is understood about how the two systems relate to each other. Here we develop a mathematical theory relating the algorithms and representations of EM and WM by showing a duality between storing memories in synapses versus neural activity. In doing so, we develop a formal theory of the algorithm and representation of prefrontal WM as structured, and controllable, neural subspaces (termed activity slots). By building models using this formalism, we elucidate the differences, similarities, and trade-offs between the hippocampal and prefrontal algorithms. Lastly, we show that several prefrontal representations in tasks ranging from list learning to cue dependent recall are unified as controllable activity slots. Our results unify frontal and temporal representations of memory, and offer a new basis for understanding the prefrontal representation of WM
Genomic investigation of sex-differential neurodevelopment and risk for autism
The Role of Spatial and Contextual Relations of real world objects in Interval Timing
In the real world, object arrangement follows a number of rules. Some of the rules pertain to the spatial relations between objects and scenes (i.e., syntactic rules) and others about the contextual relations (i.e., semantic rules). Research has shown that violation of semantic rules influences interval timing with the duration of scenes containing such violations to be overestimated as compared to scenes with no violations. However, no study has yet investigated whether both semantic and syntactic violations can affect timing in the same way. Furthermore, it is unclear whether the effect of scene violations on timing is due to attentional or other cognitive accounts. Using an oddball paradigm and real-world scenes with or without semantic and syntactic violations, we conducted two experiments on whether time dilation will be obtained in the presence of any type of scene violation and the role of attention in any such effect. Our results from Experiment 1 showed that time dilation indeed occurred in the presence of syntactic violations, while time compression was observed for semantic violations. In Experiment 2, we further investigated whether these estimations were driven by attentional accounts, by utilizing a contrast manipulation of the target objects. The results showed that an increased contrast led to duration overestimation for both semantic and syntactic oddballs. Together, our results indicate that scene violations differentially affect timing due to violation processing differences and, moreover, their effect on timing seems to be sensitive to attentional manipulations such as target contrast.
Recognizing Faces: Insights from Group and Individual Differences
Great ape interaction: Ladyginian but not Gricean
Non-human great apes inform one another in ways that can seem very humanlike. Especially in the gestural domain, their behavior exhibits many similarities with human communication, meeting widely used empirical criteria for intentionality. At the same time, there remain some manifest differences. How to account for these similarities and differences in a unified way remains a major challenge. This presentation will summarise the arguments developed in a recent paper with Christophe Heintz. We make a key distinction between the expression of intentions (Ladyginian) and the expression of specifically informative intentions (Gricean), and we situate this distinction within a ‘special case of’ framework for classifying different modes of attention manipulation. The paper also argues that the attested tendencies of great ape interaction—for instance, to be dyadic rather than triadic, to be about the here-and-now rather than ‘displaced’—are products of its Ladyginian but not Gricean character. I will reinterpret video footage of great ape gesture as Ladyginian but not Gricean, and distinguish several varieties of meaning that are continuous with one another. We conclude that the evolutionary origins of linguistic meaning lie in gradual changes in not communication systems as such, but rather in social cognition, and specifically in what modes of attention manipulation are enabled by a species’ cognitive phenotype: first Ladyginian and in turn Gricean. The second of these shifts rendered humans, and only humans, ‘language ready’.
Neuromodulation of subjective experience
Many psychoactive substances are used with the aim of altering experience, e.g. as analgesics, antidepressants or antipsychotics. These drugs act on specific receptor systems in the brain, including the opioid, serotonergic and dopaminergic systems. In this talk, I will summarise human drug studies targeting opioid receptors and their role for human experience, with focus on the experience of pain, stress, mood, and social connection. Opioids are only indicated for analgesia, due to their potential to cause addiction. When these regulations occurred, other known effects were relegated to side effects. This may be the cause of the prevalent myth that opioids are the most potent painkillers, despite evidence from head-to-head trials, Cochrane reviews and network meta-analyses that opioids are not superior to non-opioid analgesics in the treatment of acute or chronic non-cancer pain. However, due to the variability and diversity of opioid effects across contexts and experiences, some people under some circumstances may indeed benefit from prolonged treatment. I will present data on individual differences in opioid effects due to participant sex and stress induction. Understanding the effects of these commonly used medications on other aspects of the human experience is important to ensure correct use and to prevent unnecessary pain and addiction risk.
The contribution of mental face representations to individual face processing abilities
People largely differ with respect to how well they can learn, memorize, and perceive faces. In this talk, I address two potential sources of variation. One factor might be people’s ability to adapt their perception to the kind of faces they are currently exposed to. For instance, some studies report that those who show larger adaptation effects are also better at performing face learning and memory tasks. Another factor might be people’s sensitivity to perceive fine differences between similar-looking faces. In fact, one study shows that the brain of good performers in a face memory task shows larger neural differences between similar-looking faces. Capitalizing on this body of evidence, I present a behavioural study where I explore the relationship between people’s perceptual adaptability and sensitivity and their individual face processing performance.
Social and non-social learning: Common, or specialised, mechanisms? (BACN Early Career Prize Lecture 2022)
The last decade has seen a burgeoning interest in studying the neural and computational mechanisms that underpin social learning (learning from others). Many findings support the view that learning from other people is underpinned by the same, ‘domain-general’, mechanisms underpinning learning from non-social stimuli. Despite this, the idea that humans possess social-specific learning mechanisms - adaptive specializations moulded by natural selection to cope with the pressures of group living - persists. In this talk I explore the persistence of this idea. First, I present dissociations between social and non-social learning - patterns of data which are difficult to explain under the domain-general thesis and which therefore support the idea that we have evolved special mechanisms for social learning. Subsequently, I argue that most studies that have dissociated social and non-social learning have employed paradigms in which social information comprises a secondary, additional, source of information that can be used to supplement learning from non-social stimuli. Thus, in most extant paradigms, social and non-social learning differ both in terms of social nature (social or non-social) and status (primary or secondary). I conclude that status is an important driver of apparent differences between social and non-social learning. When we account for differences in status, we see that social and non-social learning share common (dopamine-mediated) mechanisms.
Sex hormone regulation of neural gene expression
Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.
How curiosity affects learning and information seeking via the dopaminergic circuit
Over the last decade, research on curiosity – the desire to seek new information – has been rapidly growing. Several studies have shown that curiosity elicits activity within the dopaminergic circuit and thereby enhances hippocampus-dependent learning. However, given this new field of research, we do not have a good understanding yet of (i) how curiosity-based learning changes across the lifespan, (ii) why some people show better learning improvements due to curiosity than others, and (iii) whether lab-based research on curiosity translates to how curiosity affects information seeking in real life. In this talk, I will present a series of behavioural and neuroimaging studies that address these three questions about curiosity. First, I will present findings on how curiosity and interest affect learning differently in childhood and adolescence. Second, I will show data on how inter-individual differences in the magnitude of curiosity-based learning depend on the strength of resting-state functional connectivity within the cortico-mesolimbic dopaminergic circuit. Third, I will present findings on how the level of resting-state functional connectivity within this circuit is also associated with the frequency of real-life information seeking (i.e., about Covid-19-related news). Together, our findings help to refine our recently proposed framework – the Prediction, Appraisal, Curiosity, and Exploration (PACE) framework – that attempts to integrate theoretical ideas on the neurocognitive mechanisms of how curiosity is elicited, and how curiosity enhances learning and information seeking. Furthermore, our findings highlight the importance of curiosity research to better understand how curiosity can be harnessed to improve learning and information seeking in real life.
The Geometry of Decision-Making
Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.
Brain and Behavior: Employing Frequency Tagging as a Tool for Measuring Cognitive Abilities
Frequency tagging based on fast periodic visual stimulation (FPVS) provides a window into ongoing visual and cognitive processing and can be leveraged to measure rule learning and high-level categorization. In this talk, I will present data demonstrating highly proficient categorization as living and non-living in preschool children, and characterize the development of this ability during infancy. In addition to associating cognitive functions with development, an intriguing question is whether frequency tagging also captures enduring individual differences, e.g. in general cognitive abilities. First studies indicate high psychometric quality of FPVS categorization responses (XU et al., Dzhelyova), providing a basis for research on individual differences. I will present results from a pilot study demonstrating high correlations between FPVS categorization responses and behavioral measures of processing speed and fluid intelligences. Drawing upon this first evidence, I will discuss the potential of frequency tagging for diagnosing cognitive functions across development.
The sense of agency as an explorative role in our perception and action
The sense of agency refers to the subjective feeling of controlling one's own behavior and, through them, external events. Why is this subjective feeling important for humans? Is it just a by-product of our actions? Previous studies have shown that the sense of agency can affect the intensity of sensory input because we predict the input from our motor intention. However, my research has found that the sense of agency plays more roles than just predictions. It enhances perceptual processes of sensory input and potentially helps to harvest more information about the link between the external world and the self. Furthermore, our recent research found both indirect and direct evidence that the sense of agency is important for people's exploratory behaviors, and this may be linked to proximal exploitations of one's control in the environment. In this talk, I will also introduce the paradigms we use to study the sense of agency as a result of perceptual processes, and our findings of individual differences in this sense and the implications.
Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome
Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.
Age differences in cortical network flexibility and motor learning ability
The speaker identification ability of blind and sighted listeners
Previous studies have shown that blind individuals outperform sighted controls in a variety of auditory tasks; however, only few studies have investigated blind listeners’ speaker identification abilities. In addition, existing studies in the area show conflicting results. The presented empirical investigation with 153 blind (74 of them congenitally blind) and 153 sighted listeners is the first of its kind and scale in which long-term memory effects of blind listeners’ speaker identification abilities are examined. For the empirical investigation, all listeners were evenly assigned to one of nine subgroups (3 x 3 design) in order to investigate the influence of two parameters with three levels, respectively, on blind and sighted listeners’ speaker identification performance. The parameters were a) time interval; i.e. a time interval of 1, 3 or 6 weeks between the first exposure to the voice to be recognised (familiarisation) and the speaker identification task (voice lineup); and b) signal quality; i.e. voice recordings were presented in either studio-quality, mobile phone-quality or as recordings of whispered speech. Half of the presented voice lineups were target-present lineups in which the previously heard target voice was included. The other half consisted of target-absent lineups which contained solely distractor voices. Blind individuals outperformed sighted listeners only under studio quality conditions. Furthermore, for blind and sighted listeners no significant performance differences were found with regard to the three investigated time intervals of 1, 3 and 6 weeks. Blind as well as sighted listeners were significantly better at picking the target voice from target-present lineups than at indicating that the target voice was absent in target-absent lineups. Within the blind group, no significant correlations were found between identification performance and onset or duration of blindness. Implications for the field of forensic phonetics are discussed.
Hormonal control of brain sex differences
Mechanisms of relational structure mapping across analogy tasks
Following the seminal structure mapping theory by Dedre Gentner, the process of mapping the corresponding structures of relations defining two analogs has been understood as a key component of analogy making. However, not without a merit, in recent years some semantic, pragmatic, and perceptual aspects of analogy mapping attracted primary attention of analogy researchers. For almost a decade, our team have been re-focusing on relational structure mapping, investigating its potential mechanisms across various analogy tasks, both abstract (semantically-lean) and more concrete (semantically-rich), using diverse methods (behavioral, correlational, eye-tracking, EEG). I will present the overview of our main findings. They suggest that structure mapping (1) consists of an incremental construction of the ultimate mental representation, (2) which strongly depends on working memory resources and reasoning ability, (3) even if as little as a single trivial relation needs to be represented mentally. The effective mapping (4) is related to the slowest brain rhythm – the delta band (around 2-3 Hz) – suggesting its highly integrative nature. Finally, we have developed a new task – Graph Mapping – which involves pure mapping of two explicit relational structures. This task allows for precise investigation and manipulation of the mapping process in experiments, as well as is one of the best proxies of individual differences in reasoning ability. Structure mapping is as crucial to analogy as Gentner advocated, and perhaps it is crucial to cognition in general.
Modeling shared and variable information encoded in fine-scale cortical topographies
Information is encoded in fine-scale functional topographies that vary from brain to brain. Hyperalignment models information that is shared across brain in a high-dimensional common information space. Hyperalignment transformations project idiosyncratic individual topographies into the common model information space. These transformations contain topographic basis functions, affording estimates of how shared information in the common model space is instantiated in the idiosyncratic functional topographies of individual brains. This new model of the functional organization of cortex – as multiplexed, overlapping basis functions – captures the idiosyncratic conformations of both coarse-scale topographies, such as retinotopy and category-selectivity, and fine-scale topographies. Hyperalignment also makes it possible to investigate how information that is encoded in fine-scale topographies differs across brains. These individual differences in fine-grained cortical function were not accessible with previous methods.
Do large language models solve verbal analogies like children do?
Analogical reasoning –learning about new things by relating it to previous knowledge– lies at the heart of human intelligence and creativity and forms the core of educational practice. Children start creating and using analogies early on, making incredible progress moving from associative processes to successful analogical reasoning. For example, if we ask a four-year-old “Horse belongs to stable like chicken belongs to …?” they may use association and reply “egg”, whereas older children will likely give the intended relational response “chicken coop” (or other term to refer to a chicken’s home). Interestingly, despite state-of-the-art AI-language models having superhuman encyclopedic knowledge and superior memory and computational power, our pilot studies show that these large language models often make mistakes providing associative rather than relational responses to verbal analogies. For example, when we asked four- to eight-year-olds to solve the analogy “body is to feet as tree is to …?” they responded “roots” without hesitation, but large language models tend to provide more associative responses such as “leaves”. In this study we examine the similarities and differences between children's and six large language models' (Dutch/multilingual models: RobBERT, BERT-je, M-BERT, GPT-2, M-GPT, Word2Vec and Fasttext) responses to verbal analogies extracted from an online adaptive learning environment, where >14,000 7-12 year-olds from the Netherlands solved 20 or more items from a database of 900 Dutch language verbal analogies.
Behavioral Timescale Synaptic Plasticity (BTSP) for biologically plausible credit assignment across multiple layers via top-down gating of dendritic plasticity
A central problem in biological learning is how information about the outcome of a decision or behavior can be used to reliably guide learning across distributed neural circuits while obeying biological constraints. This “credit assignment” problem is commonly solved in artificial neural networks through supervised gradient descent and the backpropagation algorithm. In contrast, biological learning is typically modelled using unsupervised Hebbian learning rules. While these rules only use local information to update synaptic weights, and are sometimes combined with weight constraints to reflect a diversity of excitatory (only positive weights) and inhibitory (only negative weights) cell types, they do not prescribe a clear mechanism for how to coordinate learning across multiple layers and propagate error information accurately across the network. In recent years, several groups have drawn inspiration from the known dendritic non-linearities of pyramidal neurons to propose new learning rules and network architectures that enable biologically plausible multi-layer learning by processing error information in segregated dendrites. Meanwhile, recent experimental results from the hippocampus have revealed a new form of plasticity—Behavioral Timescale Synaptic Plasticity (BTSP)—in which large dendritic depolarizations rapidly reshape synaptic weights and stimulus selectivity with as little as a single stimulus presentation (“one-shot learning”). Here we explore the implications of this new learning rule through a biologically plausible implementation in a rate neuron network. We demonstrate that regulation of dendritic spiking and BTSP by top-down feedback signals can effectively coordinate plasticity across multiple network layers in a simple pattern recognition task. By analyzing hidden feature representations and weight trajectories during learning, we show the differences between networks trained with standard backpropagation, Hebbian learning rules, and BTSP.
Time as its own representation? Exploring a link between timing of cognition and time perception
The way we represent and perceive time has crucial implications for studying temporality in conscious experience. Contrasting positions posit that temporal information is separately abstracted out like any other perceptual property, or that time is represented through representations having temporal properties themselves. To add to this debate, we investigated alterations in felt time in conditions where only conscious visual experience is altered while a bistable figure remains physically unchanged. In this talk, I will discuss two studies that we have done in relation to answering this question. In study 1, we investigated whether perceptual switches in fixed intervals altered felt time. In three experiments we showed that a break in visual experience (via a perceptual switch) also leads to a break in felt time. In study 2, we are currently looking at figure-ground perception in ambigous displays. Here, in experiment 1 we show that differences in flicker frequencies on ambigous regions can induce figure-ground segregation. To see if a reverse complementarity exists for felt time, we ask participants to view ambigous regions as figure/ground and show that they have different temporal resolutions for the same region based on whether it is seen as figure or background. Overall, the two studies provide evidence for temporal mirroring and isomorphism in visual experience, arguing for a link between the timing of experience and time perception.
Learning-to-read and dyslexia: a cross-language computational perspective
How do children learn to read in different countries? How do deficits in various components of the reading network affect learning outcomes? What are the consequences of such deficits in different languages? In this talk, I will present a full-blown developmentally plausible computational model of reading acquisition that has been implemented in English, French, Italian and German. The model can simulate individual learning trajectories and intervention outcomes on the basis of three component skills: orthography, phonology, and vocabulary. I will use the model to show how cross-language differences affect the learning-to-read process in different languages and to investigate to what extent similar deficits will produce similar or different manifestations of dyslexia in different languages.
Neuroscience of socioeconomic status and poverty: Is it actionable?
SES neuroscience, using imaging and other methods, has revealed generalizations of interest for population neuroscience and the study of individual differences. But beyond its scientific interest, SES is a topic of societal importance. Does neuroscience offer any useful insights for promoting socioeconomic justice and reducing the harms of poverty? In this talk I will use research from my own lab and others’ to argue that SES neuroscience has the potential to contribute to policy in this area, although its application is premature at present. I will also attempt to forecast the ways in which practical solutions to the problems of poverty may emerge from SES neuroscience. Bio: Martha Farah has conducted groundbreaking research on face and object recognition, visual attention, mental imagery, and semantic memory and - in more recent times - has been at the forefront of interdisciplinary research into neuroscience and society. This deals with topics such as using fMRI for lie detection, ethics of cognitive enhancement, and effects of social deprivation on brain development.
A mind set in stone: fossil traces of human brain evolution
Brains do not fossilise, but as they grow and expand during fetal and infant development, they leave an imprint in the bony braincase. Such imprints of fossilised braincases provide direct evidence of brain evolution, but the underlying biological changes have remained elusive. Combining data from fossil skulls, ancient genomes, brain imaging and gene expression helps shed light on the evolutionary changes shaping the human brain. I will highlight two examples separated by more than 3 million years: the evolution of brain growth in Lucy and her kind, and differences between modern humans and Neanderthals.
The role of top-down mechanisms in gaze perception
Humans, as a social species, have an increased ability to detect and perceive visual elements involved in social exchanges, such as faces and eyes. The gaze, in particular, conveys information crucial for social interactions and social cognition. Researchers have hypothesized that in order to engage in dynamic face-to-face communication in real time, our brains must quickly and automatically process the direction of another person's gaze. There is evidence that direct gaze improves face encoding and attention capture and that direct gaze is perceived and processed more quickly than averted gaze. These results are summarized as the "direct gaze effect". However, in the recent literature, there is evidence to suggest that the mode of visual information processing modulates the direct gaze effect. In this presentation, I argue that top-down processing, and specifically the relevance of eye features to the task, promotes the early preferential processing of direct versus indirect gaze. On the basis of several recent evidences, I propose that low task relevance of eye features will prevent differences in eye direction processing between gaze directions because its encoding will be superficial. Differential processing of direct and indirect gaze will only occur when the eyes are relevant to the task. To assess the implication of task relevance on the temporality of cognitive processing, we will measure event-related potentials (ERPs) in response to facial stimuli. In this project, instead of typical ERP markers such as P1, N170 or P300, we will measure lateralized ERPs (lERPS) such as lateralized N170 and N2pc, which are markers of early face encoding and attentional deployment respectively. I hypothesize that the relevance of the eye feature task is crucial in the direct gaze effect and propose to revisit previous studies, which had questioned the existence of the direct gaze effect. This claim will be illustrate with different past studies and recent preliminary data of my lab. Overall, I propose a systematic evaluation of the role of top-down processing in early direct gaze perception in order to understand the impact of context on gaze perception and, at a larger scope, on social cognition.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Semantic Distance and Beyond: Interacting Predictors of Verbal Analogy Performance
Prior studies of A:B::C:D verbal analogies have identified several factors that affect performance, including the semantic similarity between source and target domains (semantic distance), the semantic association between the C-term and incorrect answers (distracter salience), and the type of relations between word pairs (e.g., categorical, compositional, and causal). However, it is unclear how these stimulus properties affect performance when utilized together. Moreover, how do these item factors interact with individual differences such as crystallized intelligence and creative thinking? Several studies reveal interactions among these item and individual difference factors impacting verbal analogy performance. For example, a three-way interaction demonstrated that the effects of semantic distance and distracter salience had a greater impact on performance for compositional and causal relations than for categorical ones (Jones, Kmiecik, Irwin, & Morrison, 2022). Implications for analogy theories and future directions are discussed.
Chemistry of the adaptive mind: lessons from dopamine
The human brain faces a variety of computational dilemmas, including the flexibility/stability, the speed/accuracy and the labor/leisure tradeoff. I will argue that striatal dopamine is particularly well suited to dynamically regulate these computational tradeoffs depending on constantly changing task demands. This working hypothesis is grounded in evidence from recent studies on learning, motivation and cognitive control in human volunteers, using chemical PET, psychopharmacology, and/or fMRI. These studies also begin to elucidate the mechanisms underlying the huge variability in catecholaminergic drug effects across different individuals and across different task contexts. For example, I will demonstrate how effects of the most commonly used psychostimulant methylphenidate on learning, Pavlovian and effortful instrumental control depend on fluctuations in current environmental volatility, on individual differences in working memory capacity and on opportunity cost respectively.
Mismatching clocks: the effect of circadian misalignment on peripheral 24-h rhythms in humans
Night shift work is associated with adverse health effects and leads to misalignment between timing cues from the environment and the endogenous circadian clock. In this presentation, I will discuss the effect of circadian misalignment induced by night shift work on peripheral 24-h rhythms on the transcriptome and metabolome in humans, presenting findings from both controlled laboratory studies and field studies. Furthermore, I will highlight the importance of taking into account interindividual differences in the response to circadian misalignment.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Sex Differences in Learning from Exploration
Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless two-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get ‘stuck’ in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.
The evolution of computation in the brain: Insights from studying the retina
The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Crystallinity characterization of white matter in the human brain
White matter microstructure underpins cognition and function in the human brain through the facilitation of neuronal communication, and the non-invasive characterization of this structure remains an elusive goal in the neuroscience community. Efforts to assess white matter microstructure are hampered by the sheer amount of information needed for characterization. Current techniques address this problem by representing white matter features with single scalars that are often not easy to interpret. Here, we address these issues by introducing tools from soft matter for the characterization of white matter microstructure. We investigate structure on a mesoscopic scale by analyzing its homogeneity and determining which regions of the brain are structurally homogeneous, or ``crystalline" in the context of materials science. We find that crystallinity is a reliable metric that varies across the brain along interpretable lines of anatomical difference. We also parcellate white matter into ``crystal grains," or contiguous sets of voxels of high structural similarity, and find overlap with other white matter parcellations. Our results provide new means of assessing white matter microstructure on multiple length scales, and open new avenues of future inquiry.
The Synaptome Architecture of the Brain: Lifespan, disease, evolution and behavior
The overall aim of my research is to understand how the organisation of the synapse, with particular reference to the postsynaptic proteome (PSP) of excitatory synapses in the brain, informs the fundamental mechanisms of learning, memory and behaviour and how these mechanisms go awry in neurological dysfunction. The PSP indeed bears a remarkable burden of disease, with components being disrupted in disorders (synaptopathies) including schizophrenia, depression, autism and intellectual disability. Our work has been fundamental in revealing and then characterising the unprecedented complexity (>1000 highly conserved proteins) of the PSP in terms of the subsynaptic architecture of postsynaptic proteins such as PSD95 and how these proteins assemble into complexes and supercomplexes in different neurons and regions of the brain. Characterising the PSPs in multiple species, including human and mouse, has revealed differences in key sets of functionally important proteins, correlates with brain imaging and connectome data, and a differential distribution of disease-relevant proteins and pathways. Such studies have also provided important insight into synapse evolution, establishing that vertebrate behavioural complexity is a product of the evolutionary expansion in synapse proteomes that occurred ~500 million years ago. My lab has identified many mutations causing cognitive impairments in mice before they were found to cause human disorders. Our proteomic studies revealed that >130 brain diseases are caused by mutations affecting postsynaptic proteins. We uncovered mechanisms that explain the polygenic basis and age of onset of schizophrenia, with postsynaptic proteins, including PSD95 supercomplexes, carrying much of the polygenic burden. We discovered the “Genetic Lifespan Calendar”, a genomic programme controlling when genes are regulated. We showed that this could explain how schizophrenia susceptibility genes are timed to exert their effects in young adults. The Genes to Cognition programme is the largest genetic study so far undertaken into the synaptic molecular mechanisms underlying behaviour and physiology. We made important conceptual advances that inform how the repertoire of both innate and learned behaviours is built from unique combinations of postsynaptic proteins that either amplify or attenuate the behavioural response. This constitutes a key advance in understanding how the brain decodes information inherent in patterns of nerve impulses, and provides insight into why the PSP has evolved to be so complex, and consequently why the phenotypes of synaptopathies are so diverse. Our most recent work has opened a new phase, and scale, in understanding synapses with the first synaptome maps of the brain. We have developed next-generation methods (SYNMAP) that enable single-synapse resolution molecular mapping across the whole mouse brain and extensive regions of the human brain, revealing the molecular and morphological features of a billion synapses. This has already uncovered unprecedented spatiotemporal synapse diversity organised into an architecture that correlates with the structural and functional connectomes, and shown how mutations that cause cognitive disorders reorganise these synaptome maps; for example, by detecting vulnerable synapse subtypes and synapse loss in Alzheimer’s disease. This innovative synaptome mapping technology has huge potential to help characterise how the brain changes during normal development, including in specific cell types, and with degeneration, facilitating novel pathways to diagnosis and therapy.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Inter-individual variability in reward seeking and decision making: role of social life and consequence for vulnerability to nicotine
Inter-individual variability refers to differences in the expression of behaviors between members of a population. For instance, some individuals take greater risks, are more attracted to immediate gains or are more susceptible to drugs of abuse than others. To probe the neural bases of inter-individual variability we study reward seeking and decision-making in mice, and dissect the specific role of dopamine in the modulation of these behaviors. Using a spatial version of the multi-armed bandit task, in which mice are faced with consecutive binary choices, we could link modifications of midbrain dopamine cell dynamics with modulation of exploratory behaviors, a major component of individual characteristics in mice. By analyzing mouse behaviors in semi-naturalistic environments, we then explored the role of social relationships in the shaping of dopamine activity and associated beahviors. I will present recent data from the laboratory suggesting that changes in the activity of dopaminergic networks link social influences with variations in the expression of non-social behaviors: by acting on the dopamine system, the social context may indeed affect the capacity of individuals to make decisions, as well as their vulnerability to drugs of abuse, in particular nicotine.
Untitled Seminar
The nature of facial information that is stored by humans to recognise large amounts of faces is unclear despite decades of research in the field. To complicate matters further, little is known about how representations may evolve as novel faces become familiar, and there are large individual differences in the ability to recognise faces. I will present a theory I am developing and that assumes that facial representations are cost-efficient. In that framework, individual facial representations would incorporate different diagnostic features in different faces, regardless of familiarity, and would evolve depending on the relative stability in appearance over time. Further, coarse information would be prioritised over fine details in order to decrease storage demands. This would create low-cost facial representations that refine over time if appearance changes. Individual differences could partly rest on that ability to refine representation if needed. I will present data collected in the general population and in participants with developmental prosopagnosia. In support of the proposed view, typical observers and those with developmental prosopagnosia seem to rely on coarse peripheral features when they have no reason to expect someone’s appearance will change in the future.
Mapping the Dynamics of the Linear and 3D Genome of Single Cells in the Developing Brain
Three intimately related dimensions of the mammalian genome—linear DNA sequence, gene transcription, and 3D genome architecture—are crucial for the development of nervous systems. Changes in the linear genome (e.g., de novo mutations), transcriptome, and 3D genome structure lead to debilitating neurodevelopmental disorders, such as autism and schizophrenia. However, current technologies and data are severely limited: (1) 3D genome structures of single brain cells have not been solved; (2) little is known about the dynamics of single-cell transcriptome and 3D genome after birth; (3) true de novo mutations are extremely difficult to distinguish from false positives (DNA damage and/or amplification errors). Here, I filled in this longstanding technological and knowledge gap. I recently developed a high-resolution method—diploid chromatin conformation capture (Dip-C)—which resolved the first 3D structure of the human genome, tackling a longstanding problem dating back to the 1880s. Using Dip-C, I obtained the first 3D genome structure of a single brain cell, and created the first transcriptome and 3D genome atlas of the mouse brain during postnatal development. I found that in adults, 3D genome “structure types” delineate all major cell types, with high correlation between chromatin A/B compartments and gene expression. During development, both transcriptome and 3D genome are extensively transformed in the first month of life. In neurons, 3D genome is rewired across scales, correlated with gene expression modules, and independent of sensory experience. Finally, I examined allele-specific structure of imprinted genes, revealing local and chromosome-wide differences. More recently, I expanded my 3D genome atlas to the human and mouse cerebellum—the most consistently affected brain region in autism. I uncovered unique 3D genome rewiring throughout life, providing a structural basis for the cerebellum’s unique mode of development and aging. In addition, to accurately measure de novo mutations in a single cell, I developed a new method—multiplex end-tagging amplification of complementary strands (META-CS), which eliminates nearly all false positives by virtue of DNA complementarity. Using META-CS, I determined the true mutation spectrum of single human brain cells, free from chemical artifacts. Together, my findings uncovered an unknown dimension of neurodevelopment, and open up opportunities for new treatments for autism and other developmental disorders.
Differences between beginning and advanced students using specific analogical stimuli during design-by-analogy
Studies reported the effects of different types and different levels of abstraction of analogical stimuli on designers. However, specific, single visual analogical stimuli on the effects of designers have not been reported. We define this type of stimuli as specific analogical stimuli. We used the extended linkography method to analyze the facilitating and limiting effects of specific analogical stimuli and free association analogical stimuli (nonspecific analogical stimuli) on the students' creativity at different design levels. Through an empirical study, we explored the differences in the effects of specific analogy stimuli on the students at different design levels. It clarifies the use of analogical stimuli in design and the teaching of analogical design methods in design education.
Multi-modal biomarkers improve prediction of memory function in cognitively unimpaired older adults
Identifying biomarkers that predict current and future cognition may improve estimates of Alzheimer’s disease risk among cognitively unimpaired older adults (CU). In vivo measures of amyloid and tau protein burden and task-based functional MRI measures of core memory mechanisms, such as the strength of cortical reinstatement during remembering, have each been linked to individual differences in memory in CU. This study assesses whether combining CSF biomarkers with fMRI indices of cortical reinstatement improves estimation of memory function in CU, assayed using three unique tests of hippocampal-dependent memory. Participants were 158 CU (90F, aged 60-88 years, CDR=0) enrolled in the Stanford Aging and Memory Study (SAMS). Cortical reinstatement was quantified using multivoxel pattern analysis of fMRI data collected during completion of a paired associate cued recall task. Memory was assayed by associative cued recall, a delayed recall composite, and a mnemonic discrimination task that involved discrimination between studied ‘target’ objects, novel ‘foil’ objects, and perceptually similar ‘lure’ objects. CSF Aβ42, Aβ40, and p-tau181 were measured with the automated Lumipulse G system (N=115). Regression analyses examined cross-sectional relationships between memory performance in each task and a) the strength of cortical reinstatement in the Default Network (comprised of posterior medial, medial frontal, and lateral parietal regions) during associative cued recall and b) CSF Aβ42/Aβ40 and p-tau181, controlling for age, sex, and education. For mnemonic discrimination, linear mixed effects models were used to examine the relationship between discrimination (d’) and each predictor as a function of target-lure similarity. Stronger cortical reinstatement was associated with better performance across all three memory assays. Age and higher CSF p-tau181 were each associated with poorer associative memory and a diminished improvement in mnemonic discrimination as target-lure similarity decreased. When combined in a single model, CSF p-tau181 and Default Network reinstatement strength, but not age, explained unique variance in associative memory and mnemonic discrimination performance, outperforming the single-modality models. Combining fMRI measures of core memory functions with protein biomarkers of Alzheimer’s disease significantly improved prediction of individual differences in memory performance in CU. Leveraging multimodal biomarkers may enhance future prediction of risk for cognitive decline.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Reasoning Ability: Neural Mechanisms, Development, and Plasticity
Relational thinking, or the process of identifying and integrating relations between mental representations, is regularly invoked during reasoning. This mental capacity enables us to draw higher-order abstractions and generalize across situations and contexts, and we have argued that it should be included in the pantheon of executive functions. In this talk, I will briefly review our lab's work characterizing the roles of lateral prefrontal and parietal regions in relational thinking. I will then discuss structural and functional predictors of individual differences and developmental changes in reasoning.
The Learning Salon
In the Learning Salon, we will discuss the similarities and differences between biological and machine learning, including individuals with diverse perspectives and backgrounds, so we can all learn from one another.
Do we reason differently about affectively charged analogies? Insights from EEG research
Affectively charged analogies are commonly used in literature and art, but also in politics and argumentation. There are reasons to think we may process these analogies differently. Notably, analogical reasoning is a complex process that requires the use of cognitive resources, which are limited. In the presence of affectively charged content, some of these resources might be directed towards affective processing and away from analogical reasoning. To investigate this idea, I investigated effects of affective charge on differences in brain activity evoked by sound versus unsound analogies. The presentation will detail the methods and results for two such experiments, one in which participants saw analogies formed of neutral and negative words and one in which they were created by combining conditioned symbols. I will also briefly discuss future research aiming to investigate the effects of analogical reasoning on brain activity related to affective processing.
Contextual inference accounts for differences in motor learning under distinct curricula
COSYNE 2025
Mapping functional differences across cell types using a group embedding-enhanced transformer
COSYNE 2025
Age-related differences in oscillatory brain responses during the Sustained Attention to Response Task (SART)
FENS Forum 2024
Age-related differences in pupil dynamics assessed with cognitive pupillometry
FENS Forum 2024
EEG alpha power differences in the Icelandic winter between individuals with high vs. low risk for Seasonal Affective Disorder
FENS Forum 2024
Amygdalar regulation of memory engrams in the hippocampus: Spotlight on sex differences
FENS Forum 2024
The analyses of neural basis for individual differences in behavioral outcomes caused by long-term social defeat stress in mice
FENS Forum 2024
Analysis of differences in hippocampal adult neurogenesis induced by acute mild and severe seizures in young mice
FENS Forum 2024
Assessing receptor expression differences in the brains of PTSD-susceptible and PTSD-resilient rats
FENS Forum 2024
Developmental differences in reward-learning and functional connectivity
FENS Forum 2024
Differences between first- and second-generation antidepressants and modulation of affective biases in Lister Hooded rats
FENS Forum 2024
Differences of designer receptor exclusively activated by designer drugs (DREADD) signaling preferences compared to wild type receptors
FENS Forum 2024
Differences in the frequency-dependency of LTP and LTD at lateral and medial perforant path synapses in rodent dentate gyrus reflect distinct roles in information encoding
FENS Forum 2024
Differences in neural activation patterns within the action observation network during imitation of point-light displays and fully visible manipulative actions
FENS Forum 2024
Sex differences in nociceptor regeneration after burn injury
FENS Forum 2024
Differences in the synaptic function of human and murine alpha-synuclein
FENS Forum 2024
Discovering the individual differences in shared representations of neural dynamics and ethological behaviors
FENS Forum 2024
Exploring individual differences and stimulation parameters in amygdala-mediated memory modulation
FENS Forum 2024
Exploring the molecular and morpho-functional differences in a knock-in model of Fragile X syndrome
FENS Forum 2024
Gender differences in estimates of one's own body size depending on % body fat and self-compassion
FENS Forum 2024
Gender differences in event-related potentials of subjective cognitive decline and mild cognitive impairment during a sustained visuo-attentive task
FENS Forum 2024
Gender-specific differences in cholinergic and GABA-ergic activity in the prefrontal cortex in prenatally valproic acid exposed adult rats
FENS Forum 2024
Global brain c-Fos mapping reveals differences in brain network engagement during navigation using different visual cue classes
FENS Forum 2024
Hypothalamic gene expression following early life and acute stress exposure in adulthood: Focus on sex differences
FENS Forum 2024
Individual differences in prosocial learning are explained by hippocampal activity in mice
FENS Forum 2024
Individual differences in spatial working memory strategies differentially reflected in the engagement of control and default brain networks
FENS Forum 2024
Investigating strategies to account gender differences in mental rotation tasks - An fMRI study
FENS Forum 2024
An EEG investigation for individual differences in time perception: Unraveling neural dynamics through serial dependency
FENS Forum 2024
How many short-term memories become long-term? Unveiling the answer through the study of sex differences
FENS Forum 2024
How much data is enough to reliably measure individual differences in cognition?
FENS Forum 2024
Neural correlates of individual differences in music preferences
FENS Forum 2024
Novel astrocytic translatome isolation pipeline uncovers regional and sex-specific differences in mouse brain cortex
FENS Forum 2024
NT3-TrkC signaling in the brain fear network underlies inter-individual differences in the formation and maintenance of contextual fear extinction memories
FENS Forum 2024
Probing differences in decision process settings across contexts and individuals through joint RT-EEG hierarchical modelling
FENS Forum 2024
Can retina serve as a surrogate marker for cardiovascular risk factor-associated differences in the brain?
FENS Forum 2024
Role of the NPS system in fear extinction: Sex differences in emotional regulation in mice
FENS Forum 2024
Sensitivity to envelope and pulse timing interaural time differences in prosthetic hearing
FENS Forum 2024
Sensitivity of inferior colliculus neurons to interaural time and level differences in adult neonatally deafened rats
FENS Forum 2024
Sex-based differences in a mouse model of experimental colitis housed in environmental enrichment
FENS Forum 2024
Sex-dependent differences of short-term aerobic endurance exercise on systemic LPS-induced inflammation and microglial activation in young C57BL/6J mice
FENS Forum 2024