← Back

Differentiation

Topic spotlight
TopicWorld Wide

differentiation

Discover seminars, jobs, and research tagged with differentiation across World Wide.
38 curated items21 ePosters17 Seminars
Updated almost 2 years ago
38 items · differentiation
38 results
SeminarPsychology

Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm

Mi Xue Tan
University of Geneva
Dec 17, 2023

The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.

SeminarNeuroscience

Gut/Body interactions in health and disease

Julia Cordero
University of Glasgow
Nov 20, 2023

The adult intestine is a major barrier epithelium and coordinator of multi-organ functions. Stem cells constantly repair the intestinal epithelium by adjusting their proliferation and differentiation to tissue intrinsic as well as micro- and macro-environmental signals. How these signals integrate to control intestinal and whole-body homeostasis is largely unknown. Addressing this gap in knowledge is central to an improved understanding of intestinal pathophysiology and its systemic consequences. Combining Drosophila and mammalian model systems my laboratory has discovered fundamental mechanisms driving intestinal regeneration and tumourigenesis and outlined complex inter-organ signaling regulating health and disease. During my talk, I will discuss inter-related areas of research from my lab, including:1- Interactions between the intestine and its microenvironment influencing intestinal regeneration and tumourigenesis. 2- Long-range signals from the intestine impacting whole-body in health and disease.

SeminarNeuroscience

Sex hormone regulation of neural gene expression

Jessika Tollkuhn
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
Sep 11, 2023

Gonadal steroid hormones are the principal drivers of sex-variable biology in vertebrates. In the brain, estrogen (17β-estradiol) establishes neural sex differences in many species and modulates mood, behavior, and energy balance in adulthood. To understand the diverse effects of estradiol on the brain, we profiled the genomic binding of estrogen receptor alpha (ERα), providing the first picture of the neural actions of any gonadal hormone receptor. To relate ERα target genes to brain sex differences we assessed gene expression and chromatin accessibility in the posterior bed nucleus of the stria terminalis (BNSTp), a sexually dimorphic node in limbic circuitry that underlies sex-differential social behaviors such as aggression and parenting. In adult animals we observe that levels of ERα are predictive of the extent of sex-variable gene expression, and that these sex differences are a dynamic readout of acute hormonal state. In neonates we find that transient ERα recruitment at birth leads to persistent chromatin opening and male-biased gene expression, demonstrating a true epigenetic mechanism for brain sexual differentiation. Collectively, our findings demonstrate that sex differences in gene expression in the brain are a readout of state-dependent hormone receptor actions, rather than other factors such as sex chromosomes. We anticipate that the ERα targets we have found will contribute to established sex differences in the incidence and etiology of neurological and psychiatric disorders.

SeminarNeuroscienceRecording

CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor

Nataliya Prokhnevska
MSKCC
Mar 22, 2023
SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 14, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscienceRecording

Gene-free landscape models for development

Meritxell Sáez
Briscoe lab, Francis Crick Institute; IQS Barcelona
Jun 28, 2022

Fate decisions in developing tissues involve cells transitioning between a set of discrete cell states. Geometric models, often referred to as Waddington landscapes, are an appealing way to describe differentiation dynamics and developmental decisions. We consider the differentiation of neural and mesodermal cells from pluripotent mouse embryonic stem cells exposed to different combinations and durations of signalling factors. We developed a principled statistical approach using flow cytometry data to quantify differentiating cell states. Then, using a framework based on Catastrophe Theory and approximate Bayesian computation, we constructed the corresponding dynamical landscape. The result was a quantitative model that accurately predicted the proportions of neural and mesodermal cells differentiating in response to specific signalling regimes. Taken together, the approach we describe is broadly applicable for the quantitative analysis of differentiation dynamics and for determining the logic of developmental cell fate decisions.

SeminarNeuroscienceRecording

Exploring mechanisms of human brain expansion in cerebral organoids

Madeline Lancaster
MRC Laboratory of Molecular Biology, Cambridge
May 16, 2022

The human brain sets us apart as a species, with its size being one of its most striking features. Brain size is largely determined during development as vast numbers of neurons and supportive glia are generated. In an effort to better understand the events that determine the human brain’s cellular makeup, and its size, we use a human model system in a dish, called cerebral organoids. These 3D tissues are generated from pluripotent stem cells through neural differentiation and a supportive 3D microenvironment to generate organoids with the same tissue architecture as the early human fetal brain. Such organoids are allowing us to tackle questions previously impossible with more traditional approaches. Indeed, our recent findings provide insight into regulation of brain size and neuron number across ape species, identifying key stages of early neural stem cell expansion that set up a larger starting cell number to enable the production of increased numbers of neurons. We are also investigating the role of extrinsic regulators in determining numbers and types of neurons produced in the human cerebral cortex. Overall, our findings are pointing to key, human-specific aspects of brain development and function, that have important implications for neurological disease.

SeminarNeuroscience

Human stem cell models of Alzheimer’s disease and frontotemporal dementia

Selina Wray
UCL Queen Square institute of Neurology
Apr 10, 2022

The development of human induced pluripotent stem cells (iPSC) and their subsequent differentiation into neurons has provided new opportunities for the generation of physiologically-relevant, in vitro disease models. I will present our work using iPSC to modal familial Alzheimer's Disease (fAD) and Frontotemporal Dementia (FTD). We have investigated the mutation-specific effects of APP and PSEN1 mutations on Abeta generation in neurons generated from individuals with fAD, revealing distinct mechanisms that may contribute to clinical heterogeneity in disease. I will also discuss our work to understand the developmental and pathological changes to tau that occur in iPSC-neurons, particularly the challenges of understanding tau pathology in a developmental system, tau proteostasis and how iPSC-neurons may help us identify early signatures of tau pathology in disease.

SeminarPhysics of Life

Retinal neurogenesis and lamination: What to become, where to become it and how to move from there!

Caren Norden
Instituto Gulbenkian de Ciência
Mar 24, 2022

The vertebrate retina is an important outpost of the central nervous system, responsible for the perception and transmission of visual information. It consists of five different types of neurons that reproducibly laminate into three layers, a process of crucial importance for the organ’s function. Unsurprisingly, impaired fate decisions as well as impaired neuronal migrations and lamination lead to impaired retinal function. However, how processes are coordinated at the cellular and tissue level and how variable or robust retinal formation is, is currently still underexplored. In my lab, we aim to shed light on these questions from different angles, studying on the one hand differentiation phenomena and their variability and on the other hand the downstream migration and lamination phenomena. We use zebrafish as our main model system due to its excellent possibilities for live imaging and quantitative developmental biology. More recently we also started to use human retinal organoids as a comparative system. We further employ cross disciplinary approaches to address these issues combining work of cell and developmental biology, biomechanics, theory and computer science. Together, this allows us to integrate cell with tissue-wide phenomena and generate an appreciation of the reproducibility and variability of events.

SeminarNeuroscience

Modulation of oligodendrocyte development and myelination by voltage-gated Ca++ channels

Pablo Paez, PhD
Associate Professor, Institute for Myelin and Glia Exploration, Department of Ph ...
Feb 7, 2022

The oligodendrocyte generates CNS myelin, which is essential for normal nervous system function. Thus, investigating the regulatory and signaling mechanisms that control its differentiation and the production of myelin is relevant to our understanding of brain development and of adult pathologies such as multiple sclerosis. We have recently established that the activity of voltage-gated Ca++ channels is crucial for the adequate migration, proliferation and maturation of oligodendrocyte progenitor cells (OPCs). Furthermore, we have found that voltage-gated Ca++ channels that function in synaptic communication between neurons also mediate synaptic signaling between neurons and OPCs. Thus, we hypothesize that voltage-gated Ca++ channels are central components of OPC-neuronal synapses and are the principal ion channels mediating activity-dependent myelination.

SeminarNeuroscience

Stem cell approaches to understand acquired and genetic epilepsies

Jenny Hsieh
University of Texas at San Antonio
Nov 16, 2021

The Hsieh lab focuses on the mechanisms that promote neural stem cell self-renewal and differentiation in embryonic and adult brain. Using mouse models, video-EEG monitoring, viral techniques, and imaging/electrophysiological approaches, we elucidated many of the key transcriptional/epigenetic regulators of adult neurogenesis and showed aberrant new neuron integration in adult rodent hippocampus contribute to circuit disruption and seizure development. Building on this work, I will present our recent studies describing how GABA-mediated Ca2+ activity regulates the production of aberrant adult-born granule cells. In a new direction of my laboratory, we are using human induced pluripotent stem cells and brain organoid models as approaches to understand brain development and disease. Mutations in one gene, Aristaless-related homeobox (ARX), are of considerable interest since they are known to cause a common spectrum of neurodevelopmental disorders including epilepsy, autism, and intellectual disability. We have generated cortical and subpallial organoids from patients with poly-alanine expansion mutations in ARX. To understand the nature of ARX mutations in the organoid system, we are currently performing cellular, molecular, and physiological analyses. I will present these data to gain a comprehensive picture of the effect of ARX mutations in brain development. Since we do not understand how human brain development is affected by ARX mutations that contribute to epilepsy, we believe these studies will allow us to understand the mechanism of pathogenesis of ARX mutations, which has the potential to impact the diagnosis and care of patients.

SeminarPsychology

Age-related dedifferentiation across representational levels and their relation to memory performance

Malte Kobelt
Ruhr-University Bochum
Oct 6, 2021

Episodic memory performance decreases with advancing age. According to theoretical models, such memory decline might be a consequence of age-related reductions in the ability to form distinct neural representations of our past. In this talk, I want to present our new age-comparative fMRI study investigating age-related neural dedifferentiation across different representational levels. By combining univariate analyses and searchlight pattern similarity analyses, we found that older adults show reduced category selective processing in higher visual areas, less specific item representations in occipital regions and less stable item representations. Dedifferentiation on all these representational levels was related to memory performance, with item specificity being the strongest contributor. Overall, our results emphasize that age-related dedifferentiation can be observed across the entire cortical hierarchy which may selectively impair memory performance depending on the memory task.

SeminarNeuroscienceRecording

An Ideal Cortical Map: Towards a multi-dimensional account of cortical organisation

Casey Paquola
Forschungszentrum Jülich
Sep 2, 2021

Von Economo stated that an "Ideal Cortical Map" would look very different to a parcellation. He suggested that an Ideal Cortical Map would involve the superimposition of many different cortical maps, with changes in each map shown at every single point. In line with this idea, I will discuss our recent research on identifying principal dimensions of cortical differentiation. In particular, I will highlight large-scale patterns of cytoarchitectural differentiation that can be observed using post mortem histology or in vivo microstructure-sensitive MRI. I aim to show how this approach provides a cohesive framework to understand cortical organisation across multiple biological scales. This allows us to formulate new ideas on the organisation and function of the brain regions (eg: mesiotemporal lobe), networks (eg: DMN) and the whole cortex.

SeminarPsychology

Enhanced perception and cognition in deaf sign language users: EEG and behavioral evidence

Lorna Quandt
Gallaudet University
Aug 18, 2021

In this talk, Dr. Quandt will share results from behavioral and cognitive neuroscience studies from the past few years of her work in the Action & Brain Lab, an EEG lab at Gallaudet University, the world's premiere university for deaf and hard-of-hearing students. These results will center upon the question of how extensive knowledge of signed language changes, and in some cases enhances, people's perception and cognition. Evidence for this effect comes from studies of human biological motion using point light displays, self-report, and studies of action perception. Dr. Quandt will also discuss some of the lab's efforts in designing and testing a virtual reality environment in which users can learn American Sign Language from signing avatars (virtual humans).

SeminarNeuroscienceRecording

Malformation of cortical development: the genesis of epileptogenic networks

Alfonso Represa
INSERM, Institut de Neurobiologie de la Méditerranée
Jun 1, 2021

Malformations of cortical development (MCDs) result from alterations of one or combined developmental steps, including progenitors proliferation, neuronal migration and differentiation. They are important cause of childhood epilepsy and frequently associate cognitive deficits and behavioral alterations. Though the genetic basis of MCDs have known prominent progress during the past decade, including the identification of somatic, mosaic mutations responsible for focal MCDs, the pathophysiological mechanisms linking malformations to epileptogenesis remain elusive. In this seminar I will present data from my team and from the literature addressing this topic in two different MCDs types, the subcortical band heterotopia as a model of cortical migration defect and mTOR- dependent MCDs , that characterize by cortical dyslamination and neuronal differentiation defects.

SeminarNeuroscience

Neural correlates of cognitive control across the adult lifespan

Cheryl Grady
May 26, 2021

Cognitive control involves the flexible allocation of mental resources during goal-directed behaviour and comprises three correlated but distinct domains—inhibition, task shifting, and working memory. Healthy ageing is characterised by reduced cognitive control. Professor Cheryl Grady and her team have been studying the influence of age differences in large-scale brain networks on the three control processes in a sample of adults from 20 to 86 years of age. In this webinar, Professor Cheryl Grady will describe three aspects of this work: 1) age-related dedifferentiation and reconfiguration of brain networks across the sub-domains 2) individual differences in the relation of task-related activity to age, structural integrity and task performance for each sub-domain 3) modulation of brain signal variability as a function of cognitive load and age during working memory. This research highlights the reduction in dynamic range of network activity that occurs with ageing and how this contributes to age differences in cognitive control. Cheryl Grady is a senior scientist at the Rotman Research Institute at Baycrest, and Professor in the departments of Psychiatry and Psychology at the University of Toronto. She held the Canada Research Chair in Neurocognitive Aging from 2005-2018 and was elected as a Fellow of the Royal Society of Canada in 2019. Her research uses MRI to determine the role of brain network connectivity in cognitive ageing.

SeminarNeuroscience

Vulnerable periods of brain development in ion channelopathies

Dirk Isbrandt
Deutsches Zentrum fur Neurodegenerative Erkrankunngen
Dec 15, 2020

Brain and neuronal network development depend on a complex sequence of events, which include neurogenesis, migration, differentiation, synaptogenesis, and synaptic pruning. Perturbations to any of these processes, for example associated with ion channel gene mutations (i.e., channelopathies), can underlie neurodevelopmental disorders such as neonatal and infantile epilepsies, strongly impair psychomotor development and cause persistent deficits in cognition, motor skills, or motor control. The therapeutic options available are very limited, and prophylactic therapies for patients at an increased risk of developing such epilepsies do not exist yet. By using genetic mouse models in which we controlled the activities of Kv7/M or HCN/h-channels during different developmental periods, we obtained offspring with distinct neurological phenotypes that could not simply be reversed by the re-introduction of the affected ion channel in juvenile or adult animals. The results indicate that channelopathy/mutation-specific treatments of neonatal and infantile epilepsies and their comorbidities need to be targeted to specific sensitive periods.

ePoster

Active zone mechanisms underlying the functional differentiation of olfactory sensory neurons in Drosophila melanogaster

Namrata Acharya, Nadine Ehmann, Robert J. Kittel

FENS Forum 2024

ePoster

CETN3 deficiency perturbs proliferation and differentiation of neural stem cells in the developing human cerebral organoids

Jing Xu, Zhenming Guo, Shan Bian

FENS Forum 2024

ePoster

Maternal infection during pregnancy induces fetal neuroinflammation, associated with premature oligodendrocyte differentiation and myelin formation, driven by epigenetic changes in oligodendrocyte-specific genes

Rebecca Woods, Harry Potter, Hager Kowash, Jocelyn Glazier, Joanna Neill, Michael Harte, Christopher Murgatroyd, Reinmar Hager

FENS Forum 2024

ePoster

The chromatin remodeler CHD7 acts as a chromatin hub coordinating differentiation of multiple cell lineages during hippocampal development

Yassin Harim, Chunxuan Shao, Heike Alter, Changwen Wang, Yue Zhuo, Gözde Bekki, Asya Sayin, Nadja Stöffler, Giulia Di Muzio, Katharina Hartmann, Anna Neuerburg, Pei-Chi Wei, Weijun Feng, Hai-Kun Liu

FENS Forum 2024

ePoster

Control of neural precursor cells proliferation and differentiation by the Fragile X messenger ribonucleoprotein 1 (FMRP): Insights into the etiology of Fragile X Syndrome

Olivier Dionne, Salomé Sabatie, Mariano Avino, François Corbin, Benoit Laurent

FENS Forum 2024

ePoster

Diiodothyropropionic acid facilitates oligodendrocyte differentiation and myelination to enhance neuroprotection and neurorepair in the central nervous system

Rahimeh Emamnejad, Steven Petratos, Ezgi Ozturk, Maurice Pagnin

FENS Forum 2024

ePoster

Is dysfunctional neuronal differentiation the link between diet and neurodegeneration?

Imogen Targett, Tim Craig

FENS Forum 2024

ePoster

Electrophysiological properties and activity-dependent differentiation of human induced neurons

Attila Szücs, Jessica Lagerwall, Anikó Rátkai, Krisztina Bauer, Krisztián Tárnok, Katalin Schlett, Jerome Mertens

FENS Forum 2024

ePoster

The endothelial NMDA receptor: A new player in the differentiation of cortical oligodendrocytes?

Alexandre Béranger, Mélanie Brosolo, Morgane Lafenêtre, François Janin, Denis Vivien, Nicolas Guérout, Stéphane Marret, Bruno J Gonzalez, Maryline Lecointre

FENS Forum 2024

ePoster

Exploring the contribution of BRI2 expression and proteolytic processing on neuronal differentiation

Filipa Martins, Mariana Vassal, Ruslana Savchuk, Fátima Camões, Julia Serrano, Ricardo Martínez-Murillo, Simone Tambaro, Sandra Rebelo

FENS Forum 2024

ePoster

Expression of novel TLK2 isoforms during neuronal differentiation

Lubna Nuhu-Soso, Heidi Denton, Darren Goffin, Ines Hahn, Gareth Evans

FENS Forum 2024

ePoster

Hydrogen-sulfide-dependent Schwann cell differentiation during Wallerian degeneration: Multi-omics approach

Junyang Jung, Na Young Jeong

FENS Forum 2024

ePoster

Increased Semaphorin 3A expression levels affect axonal elongation and dendritic architecture in human neural progenitors during the early stages of differentiation

Gabriella Ferretti, Alessia Romano, Rossana Sirabella, Sara Serafini, Thorsten Jürgen Maier, Carmela Matrone

FENS Forum 2024

ePoster

Lhx4 surpasses Lhx3 to promote the differentiation of spinal V2a interneurons

Estelle Renaux, Charlotte Baudouin, Damien Marchese, Yoanne Clovis, Younès Achouri, Lin Gan, Soo-Kyung Lee, René Rezsohazy, Frédéric Clotman

FENS Forum 2024

ePoster

The mitotic protein CENP-F, implicated in microcephaly, relocalises to key cellular structures during neurodifferentiation and ciliogenesis

Ludovica Altieri, Vincenzo Costanzo, Silvia Gasparini, Pietro Cirigliano, Carlo Brighi, Cecilia Mannironi, Patrizia Lavia

FENS Forum 2024

ePoster

Modulating voltage-gated sodium channels to enhance differentiation and sensitize glioblastoma cells to chemotherapy

Francesca Giammello, Chiara Biella, Erica Cecilia Priori, Matilde Amat di San Filippo, Roberta Leone, Francesca D'Ambrosio, Martina Paterno', Giulia Cassioli, Cristina Spalletti, Ilaria Morella, Federica Barbieri, Giuseppe Lombardi, Tullio Florio, Riccardo Brambilla, Rossella Galli, Paola Rossi, Federico Brandalise

FENS Forum 2024

ePoster

A Neurofilament-L reporter cell line for the quantification of early neuronal differentiation: A bioassay for neurotrophic activities

Lisa Seidl, Stefan Winter, Ludwig Aigner, Julia Schartner

FENS Forum 2024

ePoster

Optimizing serum-free neuronal differentiation of SH-SY5Y cells: Implications for Alzheimer's disease therapy

Ihor Kozlov, Aleksandr Deviatov, Viswanath Das

FENS Forum 2024

ePoster

The role of the ASD-associated 16p11.2 gene QPRT during differentiation of human embryonic stem cell-derived cerebral organoids

Clara Droell, Julia Schwarzpaul, Silvia Lindlar, Afsheen Kumar, Andreas G. Chiocchetti, Denise Haslinger

FENS Forum 2024

ePoster

SH-SY5Y cell differentiation to dopaminergic neuron-like cells using retinoic acid

Simas Janutenas, Vassileios Stratoulias, Umamaheswari Umasankar, Silvia Orsini

FENS Forum 2024

ePoster

Understanding the consequences of prenatal CBD exposure on insular cortex neurons: Sex-specific alterations and the loss of subregional functional differentiation

Daniela Iezzi, Alba Caceres, Jessica Pereira Silva, Pascale Chavis, Olivier J.J. Manzoni

FENS Forum 2024