Digital Computer
digital computer
Consciousness in the age of mechanical minds
We are now clearly entering a new age in our relationship with machines. The power of AI natural language processors and image generators has rapidly exceeded the expectations of even those who developed them. Serious questions are now being asked about the extent to which machines could become — or perhaps already are — sentient or conscious. Do AI machines understand the instructions they are given and the answers they provide? In this talk I will consider the prospects for conscious machines, by which I mean machines that have feelings, know about their own existence, and about ours. I will suggest that the recent focus on information processing in models of consciousness, in which the brain is treated as a kind of digital computer, have mislead us about the nature of consciousness and how it is produced in biological systems. Treating the brain as an energy processing system is more likely to yield answers to these fundamental questions and help us understand how and when machines might become minds.
Digitization as a driving force for collaboration in neuroscience
Many of the collaborations we encounter in our scientific careers are centered on a common idea that can be associated with certain resources, such as a dataset, an algorithm, or a model. All partners in a collaboration need to develop a common understanding of these resources, and need to be able to access them in a simple and unambiguous manner in order to avoid incorrect conclusions especially in highly cross-disciplinary contexts. While digital computers have entered to assist scientific workflows in experiment and simulation for many decades, the high degree of heterogeneity in the field had led to a scattered landscape of highly customized, lab-internal solutions to organizing and managing the resources on a project-by-project basis. Only with the availability of modern technologies such as the semantic web, platforms for collaborative coding or the development of data standards overarching different disciplines, we have tools at our disposal to make resources increasingly more accessible, understandable, and usable. However, without overarching standardization efforts and adaptation of such technologies to the workflows and needs of individual researchers, their adoption by the neuroscience community will be impeded. From the perspective of computational neuroscience, which is inherently dependent on leveraging data and methods across the field of neuroscience for inspiration and validation, I will outline my view on past and present developments towards a more rigorous use of digital resources and how they improved collaboration, and introduce emerging initiatives to support this process in the future (e.g., EBRAINS http://ebrains.eu, NFDI-Neuro http://www.nfdi-neuro.de).