← Back

Director Field

Topic spotlight
TopicWorld Wide

director field

Discover seminars, jobs, and research tagged with director field across World Wide.
1 curated item1 Seminar
Updated almost 4 years ago
1 items · director field
1 result
SeminarPhysics of LifeRecording

Towards model-based control of active matter: active nematics and oscillator networks

Michael Norton
Rochester Institute of Technology
Jan 30, 2022

The richness of active matter's spatiotemporal patterns continues to capture our imagination. Shaping these emergent dynamics into pre-determined forms of our choosing is a grand challenge in the field. To complicate matters, multiple dynamical attractors can coexist in such systems, leading to initial condition-dependent dynamics. Consequently, non-trivial spatiotemporal inputs are generally needed to access these states. Optimal control theory provides a general framework for identifying such inputs and represents a promising computational tool for guiding experiments and interacting with various systems in soft active matter and biology. As an exemplar, I first consider an extensile active nematic fluid confined to a disk. In the absence of control, the system produces two topological defects that perpetually circulate. Optimal control identifies a time-varying active stress field that restructures the director field, flipping the system to its other attractor that rotates in the opposite direction. As a second, analogous case, I examine a small network of coupled Belousov-Zhabotinsky chemical oscillators that possesses two dominant attractors, two wave states of opposing chirality. Optimal control similarly achieves the task of attractor switching. I conclude with a few forward-looking remarks on how the same model-based control approach might come to bear on problems in biology.