TopicWorld Wide

disease

60 Seminars40 ePosters2 Positions

Pick a domain context

This cross-domain view is for discovery. Choose a domain-scoped topic page for the canonical URL.

Position

Dr. Lei Zhang

University of Birmingham, Centre for Human Brain Health, Institute of Mental Health
University of Birmingham, UK
Jan 4, 2026

Dr. Lei Zhang is looking for 2x PhD students interested in the cognitive, computational, and neural basis of (social) learning and decision-making in health and disease. The newly opened ALP(E)N Lab (Adaptive Learning Psychology and Neuroscience Lab) addresses the fundamental question of the “adaptive brain” by studying the cognitive, computational, and neurobiological basis of (social) learning and decision-making in healthy individuals (across the lifespan), and in psychiatric disorders. The lab combines an array of approaches including neuroimaging, patient studies and computational modelling (particularly hierarchical Bayesian modelling) with behavioural paradigms inspired by learning theories. The lab is based at the Centre for Human Brain Health and Institute of Mental Health at the University of Birmingham, UK, with access to exceptional facilities including MRI, MEG, TMS, and fNIRS. Funding is available through two competitive schemes from the BBSRC and MRC that provide a stipend, fees (at UK rate) and a research allowance, amongst other benefits. International (ie, outside UK) applicants are welcome.

SeminarNeuroscience

Convergent large-scale network and local vulnerabilities underlie brain atrophy across Parkinson’s disease stages

Andrew Vo
Montreal Neurological Institute, McGill University
Nov 6, 2025
SeminarNeuroscience

The tubulin code in neuron health and disease : focus on detyrosination

Marie-Jo Moutin
Grenoble Institute Neurosciences, Univ Grenoble Alpes, Inserm U1216, CNRS
Oct 10, 2025
SeminarNeuroscience

Cellular Crosstalk in Brain Development, Evolution and Disease

Silvia Cappello
Molecular Physiology of Neurogenesis at the Ludwig Maximilian University of Munich
Oct 2, 2025

Cellular crosstalk is an essential process during brain development and is influenced by numerous factors, including cell morphology, adhesion, the local extracellular matrix and secreted vesicles. Inspired by mutations associated with neurodevelopmental disorders, we focus on understanding the role of extracellular mechanisms essential for the proper development of the human brain. Therefore, we combine 2D and 3D in vitro human models to better understand the molecular and cellular mechanisms involved in progenitor proliferation and fate, migration and maturation of excitatory and inhibitory neurons during human brain development and tackle the causes of neurodevelopmental disorders.

SeminarNeuroscience

Cause & Consequences of neuronal Tau protein ‘activation’

Susanne Wegmann
German Center for Neurodegenerative Diseases (DZNE), Berlin
Jul 17, 2025
SeminarNeuroscience

Astrocytes release glutamate by regulated exocytosis in health and disease

Vladimir Parpura
Distinguished Professor Zhejiang Chinese Medical University and Director of the International Translational Neuroscience Research Institute, Hangzhou, P.R. China
Jun 5, 2025

Astrocytes release glutamate by regulated exocytosis in health and disease Vladimir Parpura, International Translational Neuroscience Research Institute, Zhejiang Chinese Medical University, Hangzhou, P.R. China Parpura will present you with the evidence that astrocytes, a subtype of glial cells in the brain, can exocytotically release the neurotransmitter glutamate and how this release is regulated. Spatiotemporal characteristic of vesicular fusion that underlie glutamate release in astrocytes will be discussed. He will also present data on a translational project in which this release pathway can be targeted for the treatment of glioblastoma, the deadliest brain cancer.

SeminarNeuroscience

Expanding mechanisms and therapeutic targets for neurodegenerative disease

Aaron D. Gitler
Department of Genetics, Stanford University
Jun 5, 2025

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing. By re-analyzing RNA-sequencing datasets from human FTD/ALS brains, we discovered dozens of novel cryptic splicing events in important neuronal genes. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies, but how those variants increase risk for disease is unknown. We discovered that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harboring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function. Recent analyses have revealed even further changes in TDP-43 target genes, including widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

SeminarNeuroscience

The cellular phase of Alzheimer’s Disease and the path towards therapies

Bart De Strooper
VIB @ University of Leuven / UKDRI @ University College London
May 16, 2025
SeminarNeuroscience

Unlocking the Secrets of Microglia in Neurodegenerative diseases: Mechanisms of resilience to AD pathologies

Ghazaleh Eskandari-Sedighi
UC Irvince
May 1, 2025
SeminarNeuroscience

Dark Matter in the Locus coeruleus - Neuromelanin in Health and Disease

Matthias Prigge
Leibniz Institute for Neurobiology, University of Magdeburg, Germany
Apr 10, 2025
SeminarNeuroscienceRecording

An inconvenient truth: pathophysiological remodeling of the inner retina in photoreceptor degeneration

Michael Telias
University of Rochester
Apr 8, 2025

Photoreceptor loss is the primary cause behind vision impairment and blindness in diseases such as retinitis pigmentosa and age-related macular degeneration. However, the death of rods and cones allows retinoids to permeate the inner retina, causing retinal ganglion cells to become spontaneously hyperactive, severely reducing the signal-to-noise ratio, and creating interference in the communication between the surviving retina and the brain. Treatments aimed at blocking or reducing hyperactivity improve vision initiated from surviving photoreceptors and could enhance the signal fidelity generated by vision restoration methodologies.

SeminarNeuroscience

Impact of High Fat Diet on Central Cardiac Circuits: When The Wanderer is Lost

Carie Boychuk
University of Missouri
Mar 20, 2025

Cardiac vagal motor drive originates in the brainstem's cardiac vagal motor neurons (CVNs). Despite well-established cardioinhibitory functions in health, our understanding of CVNs in disease is limited. There is a clear connection of cardiovascular regulation with metabolic and energy expenditure systems. Using high fat diet as a model, this talk will explore how metabolic dysfunction impacts the regulation of cardiac tissue through robust inhibition of CVNs. Specifically, it will present an often overlooked modality of inhibition, tonic gamma-aminobuytric acid (GABA) A-type neurotransmission using an array of techniques from single cell patch clamp electrophysiology to transgenic in vivo whole animal physiology. It also will highlight a unique interaction with the delta isoform of protein kinase C to facilitate GABA A-type receptor expression.

SeminarNeuroscience

Genetic Analysis of Alzheimer's disease from mechanism to therapies (with some analogies to other diseases)

John Hardy
University College London
Mar 11, 2025
SeminarNeuroscience

Constructing and deconstructing the human nervous system to study development and disease

Sergiu Pasca
Stanford University
Mar 10, 2025
SeminarNeuroscience

Pharmacological exploitation of neurotrophins and their receptors to develop novel therapeutic approaches against neurodegenerative diseases and brain trauma

Ioannis Charalampopoulos
Professor of Pharmacology, Medical School, University of Crete & Affiliated Researcher, Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH)
Mar 7, 2025

Neurotrophins (NGF, BDNF, NT-3) are endogenous growth factors that exert neuroprotective effects by preventing neuronal death and promoting neurogenesis. They act by binding to their respective high-affinity, pro-survival receptors TrkA, TrkB or TrkC, as well as to p75NTR death receptor. While these molecules have been shown to significantly slow or prevent neurodegeneration, their reduced bioavailability and inability to penetrate the blood-brain-barrier limit their use as potential therapeutics. To bypass these limitations, our research team has developed and patented small-sized, lipophilic compounds which selectively resemble neurotrophins’ effects, presenting preferable pharmacological properties and promoting neuroprotection and repair against neurodegeneration. In addition, the combination of these molecules with 3D cultured human neuronal cells, and their targeted delivery in the brain ventricles through soft robotic systems, could offer novel therapeutic approaches against neurodegenerative diseases and brain trauma.

SeminarNeuroscience

The synaptic functions of Alpha Synuclein and Lrrk2

Subhojit Roy, MD, PhD
University of Wisconsin-Madison
Feb 18, 2025

Alpha synuclein and Lrrk2 are key players in Parkinson's disease and related disorders, but their normal role has been confusing and controversial. Data from acute gene-editing based knockdown, followed by functional assays, will be presented.

SeminarNeuroscience

Defining Molecular Mechanisms Underlying Neurodegenerative Diseases

Celeste Karch, PhD
Washington University School of Medicine
Feb 4, 2025
SeminarNeuroscience

Rett syndrome, MECP2 and therapeutic strategies

Rudolf Jaenisch
Whitehead Institute for Biomedical Research and Department of Biology, MIT, Cambridge, USA
Dec 11, 2024

The development of the iPS cell technology has revolutionized our ability to study development and diseases in defined in vitro cell culture systems. The talk will focus on Rett Syndrome and discuss two topics: (i) the use of gene editing as an approach to therapy and (ii) the role of MECP2 in gene expression (i) The mutation of the X-linked MECP2 gene is causative for the disease. In a female patient, every cell has a wt copy that is, however, in 50% of the cells located on the inactive X chromosome. We have used epigenetic gene editing tools to activate the wt MECP2 allele on the inactive X chromosome. (ii) MECP2 is thought to act as repressor of gene expression. I will present data which show that MECP2 binds to Pol II and acts as an activator for thousands of genes. The target genes are significantly enriched for Autism related genes. Our data challenge the established model of MECP2’s role in gene expression and suggest novel therapeutic approaches.

SeminarNeuroscience

Genetic and epigenetic underpinnings of neurodegenerative disorders

Rudolf Jaenisch
MIT Department of Biology
Dec 11, 2024

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.

SeminarNeuroscience

SWEBAGS conference 2024: Shared network mechanisms of dopamine and deep brain stimulation for the treatment of Parkinson’s disease: From modulation of oscillatory cortex – basal ganglia communication to intelligent clinical brain computer interfaces

Wolf-Julian Neumann
Charité – Universitätsmedizin Berlin
Dec 5, 2024
SeminarNeuroscience

Brain-on-a-Chip: Advanced In Vitro Platforms for Drug Screening and Disease Modeling

Pediaditakis Iosif (Sifis)
Phragma Therapeutics
Nov 21, 2024
SeminarNeuroscience

Virtual and experimental approaches to the pathogenicity of SynGAP1 missense mutations

Michael Courtney & Pekka Postila
University of Turku
Nov 20, 2024
SeminarNeuroscience

Targeting gamma oscillations to improve cognition

Vikaas Sohal, MD, PhD
UCSF
Oct 30, 2024
SeminarNeuroscience

The molecular basis of prion diseases

Aguzzi Adriano
University of Zürich, Institute of Neuropathology
Oct 4, 2024
SeminarNeuroscienceRecording

Prosocial Learning and Motivation across the Lifespan

Patricia Lockwood
University of Birmingham, UK
Sep 10, 2024

2024 BACN Early-Career Prize Lecture Many of our decisions affect other people. Our choices can decelerate climate change, stop the spread of infectious diseases, and directly help or harm others. Prosocial behaviours – decisions that help others – could contribute to reducing the impact of these challenges, yet their computational and neural mechanisms remain poorly understood. I will present recent work that examines prosocial motivation, how willing we are to incur costs to help others, prosocial learning, how we learn from the outcomes of our choices when they affect other people, and prosocial preferences, our self-reports of helping others. Throughout the talk, I will outline the possible computational and neural bases of these behaviours, and how they may differ from young adulthood to old age.

SeminarNeuroscience

The cell biology of Parkinson’s disease: a role for primary cilia and synaptic vesicle pleomorphism in dopaminergic neurons

Nisha Mohd Rafiq
Interfaculty Institute of Biochemistry (IFIT), Tübingen University
Jul 18, 2024
SeminarNeuroscience

SYNGAP1 Natural History Study/ Multidisciplinary Clinic at Children’s Hospital Colorado

Megan Abbott, MD
Children's Hospital Colorado
Jul 17, 2024
SeminarNeuroscience

Personalized medicine and predictive health and wellness: Adding the chemical component

Anne Andrews
University of California
Jul 9, 2024

Wearable sensors that detect and quantify biomarkers in retrievable biofluids (e.g., interstitial fluid, sweat, tears) provide information on human dynamic physiological and psychological states. This information can transform health and wellness by providing actionable feedback. Due to outdated and insufficiently sensitive technologies, current on-body sensing systems have capabilities limited to pH, and a few high-concentration electrolytes, metabolites, and nutrients. As such, wearable sensing systems cannot detect key low-concentration biomarkers indicative of stress, inflammation, metabolic, and reproductive status.  We are revolutionizing sensing. Our electronic biosensors detect virtually any signaling molecule or metabolite at ultra-low levels. We have monitored serotonin, dopamine, cortisol, phenylalanine, estradiol, progesterone, and glucose in blood, sweat, interstitial fluid, and tears. The sensors are based on modern nanoscale semiconductor transistors that are straightforwardly scalable for manufacturing. We are developing sensors for >40 biomarkers for personalized continuous monitoring (e.g., smartwatch, wearable patch) that will provide feedback for treating chronic health conditions (e.g., perimenopause, stress disorders, phenylketonuria). Moreover, our sensors will enable female fertility monitoring and the adoption of more healthy lifestyles to prevent disease and improve physical and cognitive performance.

SeminarNeuroscience

Beyond the synapse: SYNGAP1 in primary and motile cilia

Helen Willsey, PhD
University of California San Francisco
May 25, 2024
SeminarNeuroscienceRecording

The Roles of Distinct Functions of SynGAP1 in SYNGAP1-Related Disorders

Richard Huganir
Johns Hopkins Medicine
May 14, 2024
SeminarNeuroscience

Investigating dynamiCa++l mechanisms underlying cortical development and disease

Georgia Panagiotakos
Icahn School of Medicine at Mount Sinai
May 8, 2024
SeminarPsychology

Exploring Lifespan Memory Development and Intervention Strategies for Memory Decline through a Unified Model-Based Assessment

Anaïs Capik
University of Washington
May 6, 2024

Understanding and potentially reversing memory decline necessitates a comprehensive examination of memory's evolution throughout life. Traditional memory assessments, however, suffer from a lack of comparability across different age groups due to the diverse nature of the tests employed. Addressing this gap, our study introduces a novel, ACT-R model-based memory assessment designed to provide a consistent metric for evaluating memory function across a lifespan, from 5 to 85-year-olds. This approach allows for direct comparison across various tasks and materials tailored to specific age groups. Our findings reveal a pronounced U-shaped trajectory of long-term memory function, with performance at age 5 mirroring those observed in elderly individuals with impairments, highlighting critical periods of memory development and decline. Leveraging this unified assessment method, we further investigate the therapeutic potential of rs-fMRI-guided TBS targeting area 8AV in individuals with early-onset Alzheimer’s Disease—a region implicated in memory deterioration and mood disturbances in this population. This research not only advances our understanding of memory's lifespan dynamics but also opens new avenues for targeted interventions in Alzheimer’s Disease, marking a significant step forward in the quest to mitigate memory decay.

SeminarNeuroscience

Use of human systems for neuroinflammatory/neurodegenerative diseases

Katia Karalis
Regeneron Pharmaceuticals, Westchester County, New York, USA
Apr 26, 2024
SeminarNeuroscience

Modeling human brain development and disease: the role of primary cilia

Kyrousi Christina
Medical School, National and Kapodistrian University of Athens, Athens, Greece
Apr 24, 2024

Neurodevelopmental disorders (NDDs) impose a global burden, affecting an increasing number of individuals. While some causative genes have been identified, understanding the human-specific mechanisms involved in these disorders remains limited. Traditional gene-driven approaches for modeling brain diseases have failed to capture the diverse and convergent mechanisms at play. Centrosomes and cilia act as intermediaries between environmental and intrinsic signals, regulating cellular behavior. Mutations or dosage variations disrupting their function have been linked to brain formation deficits, highlighting their importance, yet their precise contributions remain largely unknown. Hence, we aim to investigate whether the centrosome/cilia axis is crucial for brain development and serves as a hub for human-specific mechanisms disrupted in NDDs. Towards this direction, we first demonstrated species-specific and cell-type-specific differences in the cilia-genes expression during mouse and human corticogenesis. Then, to dissect their role, we provoked their ectopic overexpression or silencing in the developing mouse cortex or in human brain organoids. Our findings suggest that cilia genes manipulation alters both the numbers and the position of NPCs and neurons in the developing cortex. Interestingly, primary cilium morphology is disrupted, as we find changes in their length, orientation and number that lead to disruption of the apical belt and altered delamination profiles during development. Our results give insight into the role of primary cilia in human cortical development and address fundamental questions regarding the diversity and convergence of gene function in development and disease manifestation. It has the potential to uncover novel pharmacological targets, facilitate personalized medicine, and improve the lives of individuals affected by NDDs through targeted cilia-based therapies.

SeminarNeuroscience

Investigating activity-dependent processes during cortical neuronal assembly in development and disease

Simona Lodato
Humanitas University
Mar 20, 2024
SeminarNeuroscience

Cortical interneurons from brain development to disease

Denaxa Myrto
Biomedical Sciences Reaserch Center "Alexander Fleming", Athens, Greece
Mar 13, 2024
SeminarNeuroscience

Alpha synuclein in parkinson's Disease: From the bedside to the bench and back again

Stefanis Leonidas
Medical School, National and Kapodistrian University of Athens and Biomedical Research Foundation of the Academy of Athens, Athens, Greece
Jan 31, 2024
SeminarNeuroscience

From rare Genetic cohorts of Parkinsonism to biomarkers and to understanding broader neurodegenerative disease mechanisms

Leonidas Stefanis
University of Athens Medical School, Greece
Jan 25, 2024
SeminarNeuroscience

Astrocyte reprogramming / activation and brain homeostasis

Thomaidou Dimitra
Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
Dec 13, 2023

Astrocytes are multifunctional glial cells, implicated in neurogenesis and synaptogenesis, supporting and fine-tuning neuronal activity and maintaining brain homeostasis by controlling blood-brain barrier permeability. During the last years a number of studies have shown that astrocytes can also be converted into neurons if they force-express neurogenic transcription factors or miRNAs. Direct astrocytic reprogramming to induced-neurons (iNs) is a powerful approach for manipulating cell fate, as it takes advantage of the intrinsic neural stem cell (NSC) potential of brain resident reactive astrocytes. To this end, astrocytic cell fate conversion to iNs has been well-established in vitro and in vivo using combinations of transcription factors (TFs) or chemical cocktails. Challenging the expression of lineage-specific TFs is accompanied by changes in the expression of miRNAs, that post-transcriptionally modulate high numbers of neurogenesis-promoting factors and have therefore been introduced, supplementary or alternatively to TFs, to instruct direct neuronal reprogramming. The neurogenic miRNA miR-124 has been employed in direct reprogramming protocols supplementary to neurogenic TFs and other miRNAs to enhance direct neurogenic conversion by suppressing multiple non-neuronal targets. In our group we aimed to investigate whether miR-124 is sufficient to drive direct reprogramming of astrocytes to induced-neurons (iNs) on its own both in vitro and in vivo and elucidate its independent mechanism of reprogramming action. Our in vitro data indicate that miR-124 is a potent driver of the reprogramming switch of astrocytes towards an immature neuronal fate. Elucidation of the molecular pathways being triggered by miR-124 by RNA-seq analysis revealed that miR-124 is sufficient to instruct reprogramming of cortical astrocytes to immature induced-neurons (iNs) in vitro by down-regulating genes with important regulatory roles in astrocytic function. Among these, the RNA binding protein Zfp36l1, implicated in ARE-mediated mRNA decay, was found to be a direct target of miR-124, that be its turn targets neuronal-specific proteins participating in cortical development, which get de-repressed in miR-124-iNs. Furthermore, miR-124 is potent to guide direct neuronal reprogramming of reactive astrocytes to iNs of cortical identity following cortical trauma, a novel finding confirming its robust reprogramming action within the cortical microenvironment under neuroinflammatory conditions. In parallel to their reprogramming properties, astrocytes also participate in the maintenance of blood-brain barrier integrity, which ensures the physiological functioning of the central nervous system and gets affected contributing to the pathology of several neurodegenerative diseases. To study in real time the dynamic physical interactions of astrocytes with brain vasculature under homeostatic and pathological conditions, we performed 2-photon brain intravital imaging in a mouse model of systemic neuroinflammation, known to trigger astrogliosis and microgliosis and to evoke changes in astrocytic contact with brain vasculature. Our in vivo findings indicate that following neuroinflammation the endfeet of activated perivascular astrocytes lose their close proximity and physiological cross-talk with vasculature, however this event is at compensated by the cross-talk of astrocytes with activated microglia, safeguarding blood vessel coverage and maintenance of blood-brain integrity.

SeminarNeuroscience

Connectome-based models of neurodegenerative disease

Jacob Vogel
Lund University
Dec 6, 2023

Neurodegenerative diseases involve accumulation of aberrant proteins in the brain, leading to brain damage and progressive cognitive and behavioral dysfunction. Many gaps exist in our understanding of how these diseases initiate and how they progress through the brain. However, evidence has accumulated supporting the hypothesis that aberrant proteins can be transported using the brain’s intrinsic network architecture — in other words, using the brain’s natural communication pathways. This theory forms the basis of connectome-based computational models, which combine real human data and theoretical disease mechanisms to simulate the progression of neurodegenerative diseases through the brain. In this talk, I will first review work leading to the development of connectome-based models, and work from my lab and others that have used these models to test hypothetical modes of disease progression. Second, I will discuss the future and potential of connectome-based models to achieve clinically useful individual-level predictions, as well as to generate novel biological insights into disease progression. Along the way, I will highlight recent work by my lab and others that is already moving the needle toward these lofty goals.

SeminarNeuroscience

Effects of Presenilin1 FAD mutants on brain angiogenic functions and neuroprotection in Alzheimer’s Disease

Georgakopoulos Tassos
Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, USA
Nov 15, 2023
SeminarArtificial IntelligenceRecording

Mathematical and computational modelling of ocular hemodynamics: from theory to applications

Giovanna Guidoboni
University of Maine
Nov 14, 2023

Changes in ocular hemodynamics may be indicative of pathological conditions in the eye (e.g. glaucoma, age-related macular degeneration), but also elsewhere in the body (e.g. systemic hypertension, diabetes, neurodegenerative disorders). Thanks to its transparent fluids and structures that allow the light to go through, the eye offers a unique window on the circulation from large to small vessels, and from arteries to veins. Deciphering the causes that lead to changes in ocular hemodynamics in a specific individual could help prevent vision loss as well as aid in the diagnosis and management of diseases beyond the eye. In this talk, we will discuss how mathematical and computational modelling can help in this regard. We will focus on two main factors, namely blood pressure (BP), which drives the blood flow through the vessels, and intraocular pressure (IOP), which compresses the vessels and may impede the flow. Mechanism-driven models translates fundamental principles of physics and physiology into computable equations that allow for identification of cause-to-effect relationships among interplaying factors (e.g. BP, IOP, blood flow). While invaluable for causality, mechanism-driven models are often based on simplifying assumptions to make them tractable for analysis and simulation; however, this often brings into question their relevance beyond theoretical explorations. Data-driven models offer a natural remedy to address these short-comings. Data-driven methods may be supervised (based on labelled training data) or unsupervised (clustering and other data analytics) and they include models based on statistics, machine learning, deep learning and neural networks. Data-driven models naturally thrive on large datasets, making them scalable to a plethora of applications. While invaluable for scalability, data-driven models are often perceived as black- boxes, as their outcomes are difficult to explain in terms of fundamental principles of physics and physiology and this limits the delivery of actionable insights. The combination of mechanism-driven and data-driven models allows us to harness the advantages of both, as mechanism-driven models excel at interpretability but suffer from a lack of scalability, while data-driven models are excellent at scale but suffer in terms of generalizability and insights for hypothesis generation. This combined, integrative approach represents the pillar of the interdisciplinary approach to data science that will be discussed in this talk, with application to ocular hemodynamics and specific examples in glaucoma research.

SeminarNeuroscienceRecording

Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer’s disease

Daniel S. Whittaker
UCSD
Nov 9, 2023
SeminarNeuroscience

Metabolic Remodelling in the Developing Forebrain in Health and Disease

Gaia Novarino
Institute of Science and Technology Austria
Oct 31, 2023

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Motivated by the identification of autism-associated mutations in SLC7A5, a transporter for metabolically essential large neutral amino acids (LNAAs), we utilized metabolomic profiling to investigate the metabolic states of the cerebral cortex across various developmental stages. Our findings reveal significant metabolic restructuring occurring in the forebrain throughout development, with specific groups of metabolites exhibiting stage-specific changes. Through the manipulation of Slc7a5 expression in neural cells, we discovered an interconnected relationship between the metabolism of LNAAs and lipids within the cortex. Neuronal deletion of Slc7a5 influences the postnatal metabolic state, resulting in a shift in lipid metabolism and a cell-type-specific modification in neuronal activity patterns. This ultimately gives rise to enduring circuit dysfunction.

SeminarNeuroscienceRecording

From primate anatomy to human neuroimaging: insights into the circuits underlying psychiatric disease and neuromodulation; Large-scale imaging of neural circuits: towards a microscopic human connectome

Suzanne Haber, PhD & Prof. Anastasia Yendiki, PhD
University of Rochester, USA / Harvard Medical School, USA
Oct 26, 2023

On Thursday, October 26th, we will host Anastasia Yendiki and Suzanne Haber. Anastasia Yendiki, PhD, is an Associate Professor in Radiology at the Harvard Medical School and an Associate Investigator at the Massachusetts General Hospital and Athinoula A. Martinos Center. Suzanne Haber, PhD, is a Professor at the University of Rochester and runs a lab at McLean hospital at Harvard Medical School in Boston. She has received numerous awards for her work on neuroanatomy. Beside her scientific presentation, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscienceRecording

Neuroinflammation in Epilepsy: what have we learned from human brain tissue specimens ?

Eleonora Aronica
Amsterdam UMC
Oct 25, 2023

Epileptogenesis is a gradual and dynamic process leading to difficult-to-treat seizures. Several cellular, molecular, and pathophysiologic mechanisms, including the activation of inflammatory processes.  The use of human brain tissue represents a crucial strategy to advance our understanding of the underlying neuropathology and the molecular and cellular basis of epilepsy and related cognitive and behavioral comorbidities,  The mounting evidence obtained during the past decade has emphasized the critical role of inflammation  in the pathophysiological processes implicated in a large spectrum of genetic and acquired forms of  focal epilepsies. Dissecting the cellular and molecular mediators of  the pathological immune responses and their convergent and divergent mechanisms, is a major requisite for delineating their role in the establishment of epileptogenic networks. The role of small regulatory molecules involved in the regulation of  specific pro- and anti-inflammatory pathways  and the crosstalk between neuroinflammation and oxidative stress will be addressed.    The observations supporting the activation of both innate and adaptive immune responses in human focal epilepsy will be discussed and elaborated, highlighting specific inflammatory pathways as potential targets for antiepileptic, disease-modifying therapeutic strategies.

SeminarNeuroscience

The role of CNS microglia in health and disease

Kyrargyri Vassiliki
Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
Oct 25, 2023

Microglia are the resident CNS macrophages of the brain parenchyma. They have many and opposing roles in health and disease, ranging from inflammatory to anti-inflammatory and protective functions, depending on the developmental stage and the disease context. In Multiple Sclerosis, microglia are involved to important hallmarks of the disease, such as inflammation, demyelination, axonal damage and remyelination, however the exact mechanisms controlling their transformation towards a protective or devastating phenotype during the disease progression remains largely unknown until now. We wish to understand how brain microglia respond to demyelinating insults and how their behaviour changes in recovery. To do so we developed a novel histopathological analysis approach in 3D and a cell-based analysis tool that when applied in the cuprizone model of demyelination revealed region- and disease- dependent changes in microglial dynamics in the brain grey matter during demyelination and remyelination. We now use similar approaches with the aim to unravel sensitive changes in microglial dynamics during neuroinflammation in the EAE model. Furthermore, we employ constitutive knockout and tamoxifen-inducible gene-targeting approaches, immunological techniques, genetics and bioinformatics and currently seek to clarify the specific role of the brain resident microglial NF-κB molecular pathway versus other tissue macrophages in EAE.

SeminarNeuroscienceRecording

Adaptive deep brain stimulation to treat gait disorders in Parkinson's disease; Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson's disease

Doris Wang, MD, PhD & Stephanie Cernera, PhD
University of California, San Francisco, USA
Aug 31, 2023

On Friday, August 31st we will host Stephanie Cernera & Doris Wang! Stephanie Cernera, PhD, is a postdoctoral research fellow in the Starr lab at University of California San Francisco. She will tell us about “Personalized chronic adaptive deep brain stimulation outperforms conventional stimulation in Parkinson’s Disease”. Doris Wang, MD, PhD, is a neurosurgeon and assistant professor at the University of California San Francisco. Apart from her scientific presentation about “Adaptive Deep Brain Stimulation to Treat Gait Disorders in Parkinson’s Disease”, she will give us a glimpse at the “Person behind the science”. The talks will be followed by a shared discussion. You can register via talks.stimulatingbrains.org to receive the (free) Zoom link!

SeminarNeuroscience

Attending to the ups and downs of Lewy body dementia: An exploration of cognitive fluctuations

CANCELLED: John-Paul Taylor
Newcastle University, UK
Jun 27, 2023

Dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) share similarities in pathology and clinical presentation and come under the umbrella term of Lewy body dementias (LBD). Fluctuating cognition is a key symptom in LBD and manifests as altered levels of alertness and attention, with a marked difference between best and worst performance. Cognition and alertness can change over seconds or minutes to hours and days of obtundation. Cognitive fluctuations can have significant impacts on the quality of life of people with LBD as well as potentially contribute to the exacerbation of other transient symptoms including, for example, hallucinations and psychosis as well as making it difficult to measure cognitive effect size benefits in clinical trials of LBD. However, this significant symptom in LBD is poorly understood. In my presentation I will discuss the phenomenology of cognitive fluctuations, how we can measure it clinically and limitations of these approaches. I will then outline the work of our group and others which has been focussed on unpicking the aetiological basis of cognitive fluctuations in LBD using a variety of imaging approaches (e.g. SPECT, sMRI, fMRI and EEG). I will then briefly explore future research directions.

SeminarNeuroscience

Quantifying perturbed SynGAP1 function caused by coding mutations

Michael Courtney, PhD
Turku Bioscience
Jun 14, 2023
SeminarNeuroscience

Restoring function in advanced disease with photoreceptor cell replacement therapy

Rachael Pearson
King's College London
Jun 13, 2023
ePoster

Graph Signal Processing on MEG for Parkinson's disease

Valter Lundegårdh, Arvind Kumar, Pascal Helson

Bernstein Conference 2024

ePoster

HLA-dependency and possible clinical relevance of intrathecally synthesized anti-IgLON5 IgG4 in anti-IgLON5 disease

Inga Koneczny, Stefan Macher, Hutterer Markus, Thomas Seifert-Held, Evelyn Seifert-Held, Morten Blaabjerg, Markus Breu, Jens Dreyhaupt, Livia Almeida Dutra, Markus Erdler, Ingrid Fae, Gottfried Fischer, Florian Frommlet, Anna Heidbreder, Birgit Högl, Veronika Klose, Sigrid Klotz, Herburg Liendl, Mette S. Nissen, Jasmin Rahimi, Raphael Reinecke, Gerda Ricken, Ambra Stefani, Marie Süße, Helio A.G. Teive, Serge Weis, Thomas Berger, Lidia Sabater, Carles Gaig, Jan Lewerenz, Romana Höftberger

FENS Forum 2024

ePoster

Human microglia cells in Alzheimer disease-derived brain organoids: Can it be a good model?

Eva Cano, Andrés Fernández, Patricia Velasco, Belén Moreno-Jiménez

FENS Forum 2024

ePoster

Anxiety in Parkinson’s disease: Brainstem neuromodulatory mechanisms

Alexia Lantheaume, Nina Schöneberg, Silvia Rodriguez Rozada, Michael Schellenberger, Dennis Doll, Konstantin Kobel, Kilian Katzenberger, Jérémy Signoret-Genest, Maria-Soledad Esposito, Philip Tovote

FENS Forum 2024

ePoster

Boosting MFN2 levels in neurons using adeno-associated virus (AAV) vectors as a therapy for Charcot-Marie-Tooth disease type 2A

Marine Tessier, Nathalie Bonello, Nathalie Roeckel-Trévisiol, Karine Bertaux, Marc Bartoli, Valérie Delague*, Bernard Schneider*, Nathalie Bernard-Marissal

FENS Forum 2024

ePoster

The brain-gut axis in Alzheimer’s disease: Insights into a new clearance mechanism of amyloid beta peptide and tau protein

Maxime Seignobos, Sylvie Boisseau, Frédérique Vossier, Alain Buisson, Muriel Jacquier-Sarlin

FENS Forum 2024

ePoster

Characterization of the autophagic-lysosomal pathway in Parkinson’s disease using patient iPSC-derived dopaminergic neurons containing a LRRK2 G2019S mutation

Sandra Coveney, Virginia Bain, Kayley LeFrancois, Maia Zoller, Supriya Singh, Coby Carlson, A Fathi, Scott Schachtele, Richard Cho

FENS Forum 2024

ePoster

Clinical grade production of large-scale neural progenitor cells (NPC) for Huntington’s disease treatment

Josep M. Canals, Marc Estarellas, Georgina Bombau, Maria Camanyes, Irene Porcar, Jordi Abante, Unai Perpiña

FENS Forum 2024

ePoster

Comparative proteomic profiling to identify mechanisms governing nervous system stability in neurodegenerative disease

Swetha Umashankar, Samantha Eaton, Rachel Kline, Dominic Kurian, Jonathan Cooper, Colin Smith, Thomas Wishart

FENS Forum 2024

ePoster

Dieckol as a novel neuroprotective candidate with cognition improvement and multifaceted mechanisms in Alzheimer's disease mouse model

Jeong-Hyun Yoon, Mira Jun

FENS Forum 2024

ePoster

Discovery of dual inhibitors for the treatment of Alzheimer's disease

Aina Bellver Sanchis, Ainoha Sanchez-Arfelis, Alba Irisarri, Santiago Vázquez, Carmen Escolano, Christian Griñán-Ferré

FENS Forum 2024

ePoster

Dysregulation in microglia-related immune responses in cognitive impairment associated with Parkinson’s disease

Maria Francesca Palmas, Michela Etzi, Maria Francesca Manchinu, Francesca Isabella Diana, Jacopo Marongiu, Mauro Pala, Claudia Sagheddu, Michele Santoni, Giuliana Fusco, Alfonso De Simone, Marco Pistis, Augusta Pisanu, Anna Rosa Carta

FENS Forum 2024

ePoster

Efficacy and safety of anti-amyloid antibodies in Alzheimer’s disease: A comparison of conventional, Bayesian, and frequentist network meta-analyses

Danko Jeremic, Juan D Navarro-López, Lydia Jiménez-Díaz

FENS Forum 2024

ePoster

Evaluation of the biological effects of near infrared illumination and biomarker research on the late stages of Parkinson's disease in a novel mouse model

Marie Vionnet, Denis Mariolle, Istvan Horvath, Ranjeet Kumar, Pernilla Wittung-Stafshede, Christel Marquette, Jenny Molet

FENS Forum 2024

ePoster

Evolution of the psychiatric phenotype in the early stages of a Huntington's disease preclinical model

Baptiste Dayre, Katleen Pinchaud, Peter Vanhoutte, Sandrine Betuing

FENS Forum 2024

ePoster

Exploring the neuroprotective effect of auditory enhanced slow-wave sleep in a mouse model of Alzheimer’s disease

Inês Dias, Irena Barbaric, Vera Gysin, Christian Baumann, Sedef Kollarik, Daniela Noain

FENS Forum 2024

ePoster

Investigating the synaptic correlates of Alzheimer’s disease in the retrosplenial cortex of 5xFAD mice

Maria Protopapa, Ioanna Pandi, Panayiota Poirazi

FENS Forum 2024

ePoster

Local and systemic effects: Intermittent theta burst stimulation ameliorates 6-OHDA-induced Parkinson's disease pathology by modulating purinergic signaling and oxidative stress

Milorad Dragic, Milica Zeljkovic Jovanovic, Ivana Stevanovic, Jelena Stanojevic, Nadezda Nedeljkovic

FENS Forum 2024

ePoster

Loss of metabolic spike regulation may lead to disease onset and cell death in Parkinson’s

Chaitanya Chintaluri, Tim P Vogels

FENS Forum 2024

ePoster

Eye movement abnormalities as early biomarkers of Alzheimer’s disease

Andrea Zangrossi, Stefano Mozzetta, Valentina Carlucci, Giovanni Zorzi, Cinzia Bussè, Anna Chiara Cagnin, Maurizio Corbetta

FENS Forum 2024

ePoster

N-methylpropargylamino-quinazoline derivatives as potential multi-target directed ligands in the therapy of Alzheimer's disease

Martin Horak, Anna Misiachna, Jan Konecny, Martin Kufa, Barbora Svobodova, Jan Korabecny

FENS Forum 2024

ePoster

Neuroprosthetic interventions for orthostatic hypotension in neurological diseases

Suje Amir, Remi Hudelle, Elaine Soriano, Lois Mahe, Nicolas Hankov, Leonie Asboth, Robin Demesmaeker, Viviana Aureli, Edouardo Martin-Moraud, Julien Bally, Quentin Barraud, Bernard Schneider, Erwan Bezard, Stephanie Lacour, Aaron Phillips, Jocelyne Bloch, Jordan Squair, Gregoire Courtine

FENS Forum 2024

ePoster

Olfactory dysfunction as a common denominator in multiple sclerosis and Parkinson’s disease – Evidence from animal models

Andjela Stekic, Milorad Dragic, Milica Zeljkovic Jovanovic, Nadezda Nedeljkovic

FENS Forum 2024

ePoster

Pharmacological modulation of Nrf2 pathway in alpha-synuclein mouse model of Parkinson’s disease

Michela Salvadè, Elisa Zianni, Maria Italia, Monica Di Luca, Fabrizio Gardoni

FENS Forum 2024

ePoster

Pharmacological inhibition of BET proteins hampers rotenone-induced oxidative damage in an in vitro model of Parkinson’s disease

Noemi Martella, Daniele Pensabene, Mayra Colardo, Michela Varone, Arianna Mazzoli, Maurizio Muzzi, Sandra Moreno, Marco Segatto

FENS Forum 2024

ePoster

Potential role of the intestinal microbiota in Alzheimer’s disease progression through SCFA glial modulation

Pablo Miaja, Carolina Simó Ruiz, Marcos Martinez Baños, María Jesús Martín Bermejo, Miguel Ángel Garitagoitia, Virginia García Cañas, Paola Bovolenta

FENS Forum 2024

ePoster

Role of galectin-3 in aging and Parkinson’s disease

Ana María Espinosa Oliva, Alberto Rivera-Ramos, Jesús Soldán-Hidalgo, Rocío Ruiz, Francisco Hernández-Rasco, Sandro Argüelles, José Antonio Rodríguez-Gómez, Antonio José Herrera, José Luis Venero, Rocío M de Pablos

FENS Forum 2024

ePoster

Role of the immune-neuroendocrine interplay during affective episodes and euthymia in bipolar patients: Searching a reliable biological signature of the disease

Alessandra Berry, Barbara Collacchi, Letizia Giona, Eleonora Tammaro, Vincenzo Coppola, Antonio Volpicelli, Francesca Cirulli, Mario Luciano

FENS Forum 2024

ePoster

Study of the interaction between microglia and endothelial cells in an Alzheimer's disease mouse model

Juan Luis López Ogáyar, Silvia Quiñones Cañete, Alicia Elena Rosales Nieves, Alberto Pascual Bravo

FENS Forum 2024

ePoster

Study the role of microglia in Alzheimer’s disease with human iPSC-derived microglia cells

Coralie Clua Provost, Eliot Schob, Meline Antunes, Cécile Monzo, Hélène Hirbec, Carole Crozet

FENS Forum 2024

ePoster

Targeting the RNA-binding protein HuD to control ALS disease

Margherita Medici

FENS Forum 2024

ePoster

Terpenes and Alzheimer’s disease: An in vitro study

Sveva Dallere, Silvia Chasseur, Marina Boido, Alessandro Vercelli

FENS Forum 2024

ePoster

Unravelling the contribution of the APP-derived peptide AETA in Alzheimer’s disease pathology

Jade Dunot, Laurine Gonzalez, Sebastien Moreno, Carine Gandin, Agathe Launay, Sandy Ma Yishan, Ingrid Bethus, Marin Truchi, Bernard Mari, David Blum, Michael Willem, Alexis Faure, Hélène Marie

FENS Forum 2024

ePoster

Virus-mediated brain-wide expression of soluble amyloid precursor protein-alpha or its bioactive C-terminal domain reverses disease-like symptoms in an Alzheimer’s disease mouse model

Yuanyuan He, Bruce Mockett, Lucia Schweitzer, Stephanie Hughes, Wickliffe Abraham

FENS Forum 2024

ePoster

Network properties of structural-functional interplay across disease stages in early psychosis (EP): a whole brain model approach

Ludovica Mana

Neuromatch 5

ePoster

Dopamine dysregulation in Parkinson's Disease

Chaitanya Chintaluri, Tim Vogels

Bernstein Conference 2024

ePoster

Hippocampal representational drift and the impact of Alzheimer’s disease

Namra Aamir, Alexander Schmidt, Fred Wolf, Kotaro Mizuta, Yasunori Hayashi

Bernstein Conference 2024

ePoster

The vanishing dopamine in Parkinson's disease

Chaitanya Chintaluri & Tim P Vogels

COSYNE 2023

ePoster

Disrupted Egocentric Vector Coding of Environmental Geometry in Alzheimer’s Disease Mouse Model

Yoonsoo Yeo, Jeehyun Kwag

COSYNE 2025

ePoster

Exploring the impact of transglutaminase 2 in Parkinson’s disease: Mitochondrial dysfunction and proteomic pathways

Bishr Shibani, Alan Hargreaves, David Bocock, Clare Coveney

FENS Forum 2024