← Back

Dna Methylation

Topic spotlight
TopicWorld Wide

DNA methylation

Discover seminars, jobs, and research tagged with DNA methylation across World Wide.
12 curated items6 Seminars6 ePosters
Updated over 2 years ago
12 items · DNA methylation
12 results
SeminarNeuroscience

Establishment and aging of the neuronal DNA methylation landscape in the hippocampus

Sara Zocher, PhD
German Center for Neurodegenerative Diseases (DZNE), Dresden
Apr 11, 2023

The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.

SeminarNeuroscience

At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease

Julia Schulze-Hentrich
Institute of Medical Genetics and Applied Genomics, University of Tübingen
Jul 19, 2022

Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.

SeminarNeuroscienceRecording

Dissecting the 3D regulatory landscape of the developing cerebral cortex with single-cell epigenomics

Boyan Bonev, PhD
Ludwig-Maximilians-Universität München
Mar 1, 2022

Understanding how different epigenetic layers are coordinated to facilitate robust lineage decisions during development is one of the fundamental questions in regulatory genomics. Using single-cell epigenomics coupled with cell-type specific high-throughput mapping of enhancer activity, DNA methylation and the 3D genome landscape in vivo, we dissected how the epigenome is rewired during cortical development. We identified and functionally validated key transcription factors such as Neurog2 which underlie regulatory dynamics and coordinate rewiring across multiple epigenetic layers to ensure robust lineage specification. This work showcases the power of high-throughput integrative genomics to dissect the molecular rules of cell fate decisions in the brain and more broadly, how to apply them to evolution and disease.

SeminarNeuroscience

Untitled Seminar

Katja Kobow, PhD
Associate Professor Molecular Neuropathology, Dept. of Neuropathology, University Hospital Erlangen, Germany
Oct 26, 2021
SeminarNeuroscience

Integration of „environmental“ information in the neuronal epigenome

Geraldine Zimmer-Bensch
Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen, Aachen, Germany
Aug 24, 2021

The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.

ePoster

Differential effects of maternal immune activation on hippocampal DNA methylation and behavior in stress-resilient and stress-susceptible mice

Elad Lax, Raphael Avneri, Dilorom Begmatova, Mali Salmon Divon, Albert Pinhasov

FENS Forum 2024

ePoster

Hippocampal DNA methylation processes promote memory persistence by facilitating systems consolidation and cortical engram stabilisation

Janina Kupke, Stefanos Loizou, Carsten Sticht, Ana MM Oliveira

FENS Forum 2024

ePoster

DNA methylation pattern changes after exposure to delta-9-tetrahydrocannabinol (THC) in human peripheral blood mononuclear cells

Kerda Pulk, Kelli Somelar-Duracz, Kaili Anier, Anti Kalda

FENS Forum 2024

ePoster

DNA methylation patterns in aging

Alejandro Gonzalez Ramon, Jose Vicente Sánchez-Mut

FENS Forum 2024

ePoster

Methyldonor supplementation protects against early-life stress induced emotional dysregulation via modulation of hypothalamic DNA methylation

Natalia Schilder, Kitty Reemst, Veronica Begni, Moshe Szyf, David Cheishvili, Marco Riva, Aniko Korosi

FENS Forum 2024

ePoster

Mutant huntingtin disrupts global DNA methylation in human iPSC-derived cerebral organoids

Elad Dvir, Moria Maman, Xue Sun, Khalil Joron, Eitan Lerner, Oren Ram, Sagiv Shifman, Eran Meshorer

FENS Forum 2024