Dynamic Attention
dynamic attention
The dynamics of temporal attention
Selection is the hallmark of attention: processing improves for attended items but is relatively impaired for unattended items. It is well known that visual spatial attention changes sensory signals and perception in this selective fashion. In the work I will present, we asked whether and how attentional selection happens across time. First, our experiments revealed that voluntary temporal attention (attention to specific points in time) is selective, resulting in perceptual tradeoffs across time. Second, we measured small eye movements called microsaccades and found that directing voluntary temporal attention increases the stability of the eyes in anticipation of an attended stimulus. Third, we developed a computational model of dynamic attention, which proposes specific mechanisms underlying temporal attention and its selectivity. Lastly, I will mention how we are testing predictions of the model with MEG. Altogether, this research shows how precisely timed voluntary attention helps manage inherent limits in visual processing across short time intervals, advancing our understanding of attention as a dynamic process.
How do we find what we are looking for? The Guided Search 6.0 model
The talk will give a tour of Guided Search 6.0 (GS6), the latest evolution of Guided Search. Part 1 describes The Mechanics of Search. Because we cannot recognize more than a few items at a time, selective attention is used to prioritize items for processing. Selective attention to an item allows its features to be bound together into a representation that can be matched to a target template in memory or rejected as a distractor. The binding and recognition of an attended object is modeled as a diffusion process taking > 150 msec/item. Since selection occurs more frequently than that, it follows that multiple items are undergoing recognition at the same time, though asynchronously, making GS6 a hybrid serial and parallel model. If a target is not found, search terminates when an accumulating quitting signal reaches a threshold. Part 2 elaborates on the five sources of Guidance that are combined into a spatial “priority map” to guide the deployment of attention (hence “guided search”). These are (1) top-down and (2) bottom-up feature guidance, (3) prior history (e.g. priming), (4) reward, and (5) scene syntax and semantics. In GS6, the priority map is a dynamic attentional landscape that evolves over the course of search. In part, this is because the visual field is inhomogeneous. Part 3: That inhomogeneity imposes spatial constraints on search that described by three types of “functional visual field” (FVFs): (1) a resolution FVF, (2) an FVF governing exploratory eye movements, and (3) an FVF governing covert deployments of attention. Finally, in Part 4, we will consider that the internal representation of the search target, the “search template” is really two templates: a guiding template and a target template. Put these pieces together and you have GS6.