← Back

Dynamical Attractors

Topic spotlight
TopicWorld Wide

dynamical attractors

Discover seminars, jobs, and research tagged with dynamical attractors across World Wide.
2 curated items2 Seminars
Updated almost 4 years ago
2 items · dynamical attractors
2 results
SeminarPhysics of LifeRecording

Towards model-based control of active matter: active nematics and oscillator networks

Michael Norton
Rochester Institute of Technology
Jan 30, 2022

The richness of active matter's spatiotemporal patterns continues to capture our imagination. Shaping these emergent dynamics into pre-determined forms of our choosing is a grand challenge in the field. To complicate matters, multiple dynamical attractors can coexist in such systems, leading to initial condition-dependent dynamics. Consequently, non-trivial spatiotemporal inputs are generally needed to access these states. Optimal control theory provides a general framework for identifying such inputs and represents a promising computational tool for guiding experiments and interacting with various systems in soft active matter and biology. As an exemplar, I first consider an extensile active nematic fluid confined to a disk. In the absence of control, the system produces two topological defects that perpetually circulate. Optimal control identifies a time-varying active stress field that restructures the director field, flipping the system to its other attractor that rotates in the opposite direction. As a second, analogous case, I examine a small network of coupled Belousov-Zhabotinsky chemical oscillators that possesses two dominant attractors, two wave states of opposing chirality. Optimal control similarly achieves the task of attractor switching. I conclude with a few forward-looking remarks on how the same model-based control approach might come to bear on problems in biology.

SeminarPhysics of Life

Nonequilibrium self-assembly and time-irreversibility in living systems

Gili Bisker
Tel Aviv University
Nov 4, 2021

Far-from-equilibrium processes constantly dissipate energy while converting a free-energy source to another form of energy. Living systems, for example, rely on an orchestra of molecular motors that consume chemical fuel to produce mechanical work. In this talk, I will describe two features of life, namely, time-irreversibility, and nonequilibrium self-assembly. Time irreversibility is the hallmark of nonequilibrium dissipative processes. Detecting dissipation is essential for our basic understanding of the underlying physical mechanism, however, it remains a challenge in the absence of observable directed motion, flows, or fluxes. Additional difficulty arises in complex systems where many internal degrees of freedom are inaccessible to an external observer. I will introduce a novel approach to detect time irreversibility and estimate the entropy production from time-series measurements, even in the absence of observable currents. This method can be implemented in scenarios where only partial information is available and thus provides a new tool for studying nonequilibrium phenomena. Further, I will explore the added benefits achieved by nonequilibrium driving for self-assembly, identify distinctive collective phenomena that emerge in a nonequilibrium self-assembly setting, and demonstrate the interplay between the assembly speed, kinetic stability, and relative population of dynamical attractors.