← Back

Eeg Dataset

Topic spotlight
TopicWorld Wide

EEG dataset

Discover seminars, jobs, and research tagged with EEG dataset across World Wide.
3 curated items3 Seminars
Updated almost 3 years ago
3 items · EEG dataset
3 results
SeminarNeuroscienceRecording

Sampling the environment with body-brain rhythms

Antonio Criscuolo
Maastricht University
Jan 24, 2023

Since Darwin, comparative research has shown that most animals share basic timing capacities, such as the ability to process temporal regularities and produce rhythmic behaviors. What seems to be more exclusive, however, are the capacities to generate temporal predictions and to display anticipatory behavior at salient time points. These abilities are associated with subcortical structures like basal ganglia (BG) and cerebellum (CE), which are more developed in humans as compared to nonhuman animals. In the first research line, we investigated the basic capacities to extract temporal regularities from the acoustic environment and produce temporal predictions. We did so by adopting a comparative and translational approach, thus making use of a unique EEG dataset including 2 macaque monkeys, 20 healthy young, 11 healthy old participants and 22 stroke patients, 11 with focal lesions in the BG and 11 in the CE. In the second research line, we holistically explore the functional relevance of body-brain physiological interactions in human behavior. Thus, a series of planned studies investigate the functional mechanisms by which body signals (e.g., respiratory and cardiac rhythms) interact with and modulate neurocognitive functions from rest and sleep states to action and perception. This project supports the effort towards individual profiling: are individuals’ timing capacities (e.g., rhythm perception and production), and general behavior (e.g., individual walking and speaking rates) influenced / shaped by body-brain interactions?

SeminarPsychology

Characterising the brain representations behind variations in real-world visual behaviour

Simon Faghel-Soubeyrand
Université de Montréal
Aug 4, 2021

Not all individuals are equally competent at recognizing the faces they interact with. Revealing how the brains of different individuals support variations in this ability is a crucial step to develop an understanding of real-world human visual behaviour. In this talk, I will present findings from a large high-density EEG dataset (>100k trials of participants processing various stimulus categories) and computational approaches which aimed to characterise the brain representations behind real-world proficiency of “super-recognizers”—individuals at the top of face recognition ability spectrum. Using decoding analysis of time-resolved EEG patterns, we predicted with high precision the trial-by-trial activity of super-recognizers participants, and showed that evidence for face recognition ability variations is disseminated along early, intermediate and late brain processing steps. Computational modeling of the underlying brain activity uncovered two representational signatures supporting higher face recognition ability—i) mid-level visual & ii) semantic computations. Both components were dissociable in brain processing-time (the first around the N170, the last around the P600) and levels of computations (the first emerging from mid-level layers of visual Convolutional Neural Networks, the last from a semantic model characterising sentence descriptions of images). I will conclude by presenting ongoing analyses from a well-known case of acquired prosopagnosia (PS) using similar computational modeling of high-density EEG activity.