← Back

Emergence

Topic spotlight
TopicWorld Wide

emergence

Discover seminars, jobs, and research tagged with emergence across World Wide.
83 curated items60 Seminars23 ePosters
Updated in 3 days
83 items · emergence
83 results
SeminarNeuroscience

Developmental emergence of personality

Bassem Hassan
Paris Brain Institute, ICM, France
Dec 9, 2025

The Nature versus Nurture debate has generally been considered from the lens of genome versus experience dichotomy and has dominated our thinking about behavioral individuality and personality traits. In contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using the Drosophila melanogaster visual system, I will discuss our efforts to dissect how individuality in circuit wiring emerges during development, and how that helps generate individual behavioral variation.

SeminarNeuroscience

Emergence of behavioural individuality from global microstructure of the brain and learning

Ana Marija Jaksic
EPFL, Switzerland
Nov 10, 2024
SeminarPsychology

Conversations with Caves? Understanding the role of visual psychological phenomena in Upper Palaeolithic cave art making

Izzy Wisher
Aarhus University
Feb 25, 2024

How central were psychological features deriving from our visual systems to the early evolution of human visual culture? Art making emerged deep in our evolutionary history, with the earliest art appearing over 100,000 years ago as geometric patterns etched on fragments of ochre and shell, and figurative representations of prey animals flourishing in the Upper Palaeolithic (c. 40,000 – 15,000 years ago). The latter reflects a complex visual process; the ability to represent something that exists in the real world as a flat, two-dimensional image. In this presentation, I argue that pareidolia – the psychological phenomenon of seeing meaningful forms in random patterns, such as perceiving faces in clouds – was a fundamental process that facilitated the emergence of figurative representation. The influence of pareidolia has often been anecdotally observed in Upper Palaeolithic art examples, particularly cave art where the topographic features of cave wall were incorporated into animal depictions. Using novel virtual reality (VR) light simulations, I tested three hypotheses relating to pareidolia in the caves of Upper Palaeolithic cave art in the caves of Las Monedas and La Pasiega (Cantabria, Spain). To evaluate this further, I also developed an interdisciplinary VR eye-tracking experiment, where participants were immersed in virtual caves based on the cave of El Castillo (Cantabria, Spain). Together, these case studies suggest that pareidolia was an intrinsic part of artist-cave interactions (‘conversations’) that influenced the form and placement of figurative depictions in the cave. This has broader implications for conceiving of the role of visual psychological phenomena in the emergence and development of figurative art in the Palaeolithic.

SeminarNeuroscience

NeuroAI from model to understanding: revealing the emergence of computations from the collective dynamics of interacting neurons

Surya Ganguli
Stanford University
Sep 12, 2023
SeminarNeuroscience

The Geometry of Decision-Making

Iain Couzin
University of Konstanz, Germany
May 23, 2023

Running, swimming, or flying through the world, animals are constantly making decisions while on the move—decisions that allow them to choose where to eat, where to hide, and with whom to associate. Despite this most studies have considered only on the outcome of, and time taken to make, decisions. Motion is, however, crucial in terms of how space is represented by organisms during spatial decision-making. Employing a range of new technologies, including automated tracking, computational reconstruction of sensory information, and immersive ‘holographic’ virtual reality (VR) for animals, experiments with fruit flies, locusts and zebrafish (representing aerial, terrestrial and aquatic locomotion, respectively), I will demonstrate that this time-varying representation results in the emergence of new and fundamental geometric principles that considerably impact decision-making. Specifically, we find that the brain spontaneously reduces multi-choice decisions into a series of abrupt (‘critical’) binary decisions in space-time, a process that repeats until only one option—the one ultimately selected by the individual—remains. Due to the critical nature of these transitions (and the corresponding increase in ‘susceptibility’) even noisy brains are extremely sensitive to very small differences between remaining options (e.g., a very small difference in neuronal activity being in “favor” of one option) near these locations in space-time. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarNeuroscienceRecording

Nature over Nurture: Functional neuronal circuits emerge in the absence of developmental activity

Dániel L. Barabási
Engert lab, MCB Harvard University
Apr 4, 2023

During development, the complex neuronal circuitry of the brain arises from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that neuronal activity plays a critical role in shaping circuits for behavior. Current AI technologies are modeled after the same principle: connections in an initial weight matrix are pruned and strengthened by activity-dependent signals until the network can sufficiently generalize a set of inputs into outputs. Here, we challenge these learning-dominated assumptions by quantifying the contribution of neuronal activity to the development of visually guided swimming behavior in larval zebrafish. Intriguingly, dark-rearing zebrafish revealed that visual experience has no effect on the emergence of the optomotor response (OMR). We then raised animals under conditions where neuronal activity was pharmacologically silenced from organogenesis onward using the sodium-channel blocker tricaine. Strikingly, after washout of the anesthetic, animals performed swim bouts and responded to visual stimuli with 75% accuracy in the OMR paradigm. After shorter periods of silenced activity OMR performance stayed above 90% accuracy, calling into question the importance and impact of classical critical periods for visual development. Detailed quantification of the emergence of functional circuit properties by brain-wide imaging experiments confirmed that neuronal circuits came ‘online’ fully tuned and without the requirement for activity-dependent plasticity. Thus, contrary to what you learned on your mother's knee, complex sensory guided behaviors can be wired up innately by activity-independent developmental mechanisms.

SeminarNeuroscienceRecording

Dynamics of cortical circuits: underlying mechanisms and computational implications

Alessandro Sanzeni
Bocconi University, Milano
Jan 24, 2023

A signature feature of cortical circuits is the irregularity of neuronal firing, which manifests itself in the high temporal variability of spiking and the broad distribution of rates. Theoretical works have shown that this feature emerges dynamically in network models if coupling between cells is strong, i.e. if the mean number of synapses per neuron K is large and synaptic efficacy is of order 1/\sqrt{K}. However, the degree to which these models capture the mechanisms underlying neuronal firing in cortical circuits is not fully understood. Results have been derived using neuron models with current-based synapses, i.e. neglecting the dependence of synaptic current on the membrane potential, and an understanding of how irregular firing emerges in models with conductance-based synapses is still lacking. Moreover, at odds with the nonlinear responses to multiple stimuli observed in cortex, network models with strongly coupled cells respond linearly to inputs. In this talk, I will discuss the emergence of irregular firing and nonlinear response in networks of leaky integrate-and-fire neurons. First, I will show that, when synapses are conductance-based, irregular firing emerges if synaptic efficacy is of order 1/\log(K) and, unlike in current-based models, persists even under the large heterogeneity of connections which has been reported experimentally. I will then describe an analysis of neural responses as a function of coupling strength and show that, while a linear input-output relation is ubiquitous at strong coupling, nonlinear responses are prominent at moderate coupling. I will conclude by discussing experimental evidence of moderate coupling and loose balance in the mouse cortex.

SeminarPsychology

Adaptation via innovation in the animal kingdom

Kata Horváth
Eötvös Loránd University & Lund University
Nov 23, 2022

Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.

SeminarNeuroscienceRecording

Hidden nature of seizures

Premysl Jiruska
Charles University, Prague
Oct 4, 2022

How seizures emerge from the abnormal dynamics of neural networks within the epileptogenic tissue remains an enigma. Are seizures random events, or do detectable changes in brain dynamics precede them? Are mechanisms of seizure emergence identical at the onset and later stages of epilepsy? Is the risk of seizure occurrence stable, or does it change over time? A myriad of questions about seizure genesis remains to be answered to understand the core principles governing seizure genesis. The last decade has brought unprecedented insights into the complex nature of seizure emergence. It is now believed that seizure onset represents the product of the interactions between the process of a transition to seizure, long-term fluctuations in seizure susceptibility, epileptogenesis, and disease progression. During the lecture, we will review the latest observations about mechanisms of ictogenesis operating at multiple temporal scales. We will show how the latest observations contribute to the formation of a comprehensive theory of seizure genesis, and challenge the traditional perspectives on ictogenesis. Finally, we will discuss how combining conventional approaches with computational modeling, modern techniques of in vivo imaging, and genetic manipulation open prospects for exploration of yet hidden mechanisms of seizure genesis.

SeminarNeuroscience

Chandelier cells shine a light on the emergence of GABAergic circuits in the cortex

Juan Burrone
King’s College London
Sep 27, 2022

GABAergic interneurons are chiefly responsible for controlling the activity of local circuits in the cortex. Chandelier cells (ChCs) are a type of GABAergic interneuron that control the output of hundreds of neighbouring pyramidal cells through axo-axonic synapses which target the axon initial segment (AIS). Despite their importance in modulating circuit activity, our knowledge of the development and function of axo-axonic synapses remains elusive. We have investigated the emergence and plasticity of axo-axonic synapses in layer 2/3 of the somatosensory cortex (S1) and found that ChCs follow what appear to be homeostatic rules when forming synapses with pyramidal neurons. We are currently implementing in vivo techniques to image the process of axo-axonic synapse formation during development and uncover the dynamics of synaptogenesis and pruning at the AIS. In addition, we are using an all-optical approach to both activate and measure the activity of chandelier cells and their postsynaptic partners in the primary visual cortex (V1) and somatosensory cortex (S1) in mice, also during development. We aim to provide a structural and functional description of the emergence and plasticity of a GABAergic synapse type in the cortex.

SeminarNeuroscienceRecording

Spontaneous Emergence of Computation in Network Cascades

Galen Wilkerson
Imperial College London
Aug 4, 2022

Neuronal network computation and computation by avalanche supporting networks are of interest to the fields of physics, computer science (computation theory as well as statistical or machine learning) and neuroscience. Here we show that computation of complex Boolean functions arises spontaneously in threshold networks as a function of connectivity and antagonism (inhibition), computed by logic automata (motifs) in the form of computational cascades. We explain the emergent inverse relationship between the computational complexity of the motifs and their rank-ordering by function probabilities due to motifs, and its relationship to symmetry in function space. We also show that the optimal fraction of inhibition observed here supports results in computational neuroscience, relating to optimal information processing.

SeminarNeuroscience

The evolution of computation in the brain: Insights from studying the retina

Tom Baden
University of Sussex (UK)
Jun 1, 2022

The retina is probably the most accessible part of the vertebrate central nervous system. Its computational logic can be interrogated in a dish, from patterns of lights as the natural input, to spike trains on the optic nerve as the natural output. Consequently, retinal circuits include some of the best understood computational networks in neuroscience. The retina is also ancient, and central to the emergence of neurally complex life on our planet. Alongside new locomotor strategies, the parallel evolution of image forming vision in vertebrate and invertebrate lineages is thought to have driven speciation during the Cambrian. This early investment in sophisticated vision is evident in the fossil record and from comparing the retina’s structural make up in extant species. Animals as diverse as eagles and lampreys share the same retinal make up of five classes of neurons, arranged into three nuclear layers flanking two synaptic layers. Some retina neuron types can be linked across the entire vertebrate tree of life. And yet, the functions that homologous neurons serve in different species, and the circuits that they innervate to do so, are often distinct to acknowledge the vast differences in species-specific visuo-behavioural demands. In the lab, we aim to leverage the vertebrate retina as a discovery platform for understanding the evolution of computation in the nervous system. Working on zebrafish alongside birds, frogs and sharks, we ask: How do synapses, neurons and networks enable ‘function’, and how can they rearrange to meet new sensory and behavioural demands on evolutionary timescales?

SeminarNeuroscienceRecording

The function and localization of human consciousness

Po-Jang Brown Hsieh
National Taiwan University
May 26, 2022

Scientific studies of consciousness can be roughly categorized into two directions: (1) How/where does consciousness emerge? (the mechanism of consciousness) and (2) Why is there consciousness? (the function of consciousness). I will summarize my past research on the quest for consciousness in these two directions.

SeminarNeuroscienceRecording

Optimization at the Single Neuron Level:​ Prediction of Spike Sequences and Emergence of Synaptic Plasticity Mechanisms

Matteo Saponati
Ernst-Strüngmann Institute for Neuroscience
May 3, 2022

Intelligent behavior depends on the brain’s ability to anticipate future events. However, the learning rules that enable neurons to predict and fire ahead of sensory inputs remain largely unknown. We propose a plasticity rule based on pre-dictive processing, where the neuron learns a low-rank model of the synaptic input dynamics in its membrane potential. Neurons thereby amplify those synapses that maximally predict other synaptic inputs based on their temporal relations, which provide a solution to an optimization problem that can be implemented at the single-neuron level using only local information. Consequently, neurons learn sequences over long timescales and shift their spikes towards the first inputs in a sequence. We show that this mechanism can explain the development of anticipatory motion signaling and recall in the visual system. Furthermore, we demonstrate that the learning rule gives rise to several experimentally observed STDP (spike-timing-dependent plasticity) mechanisms. These findings suggest prediction as a guiding principle to orchestrate learning and synaptic plasticity in single neurons.

SeminarNeuroscience

Remembering Immunity, Central regulation of peripheral immune processes

Asya Rolls
Technion, Israel Institute of Technology
May 1, 2022

Thoughts and emotions can impact physiology. This connection is evident by the emergence of disease following stress, psychosomatic disorders, or recovery in response to placebo treatment. Nevertheless, this fundamental aspect of physiology remains largely unexplored. In this talk, I will focus on the brain’s involvement in regulating the peripheral immune response and explore the question of how the brain evaluates and represents the state of the immune system it regulates.

SeminarNeuroscienceRecording

CNStalk: The emergence of High order Hubs in the Human Connectome

Fernando Santos
University van Amsterdam, Amsterdam, The Netherlands
Apr 27, 2022
SeminarNeuroscienceRecording

The balance of excitation and inhibition and a canonical cortical computation

Yashar Ahmadian
Cambridge, UK
Apr 26, 2022

Excitatory and inhibitory (E & I) inputs to cortical neurons remain balanced across different conditions. The balanced network model provides a self-consistent account of this observation: population rates dynamically adjust to yield a state in which all neurons are active at biological levels, with their E & I inputs tightly balanced. But global tight E/I balance predicts population responses with linear stimulus-dependence and does not account for systematic cortical response nonlinearities such as divisive normalization, a canonical brain computation. However, when necessary connectivity conditions for global balance fail, states arise in which only a localized subset of neurons are active and have balanced inputs. We analytically show that in networks of neurons with different stimulus selectivities, the emergence of such localized balance states robustly leads to normalization, including sublinear integration and winner-take-all behavior. An alternative model that exhibits normalization is the Stabilized Supralinear Network (SSN), which predicts a regime of loose, rather than tight, E/I balance. However, an understanding of the causal relationship between E/I balance and normalization in SSN and conditions under which SSN yields significant sublinear integration are lacking. For weak inputs, SSN integrates inputs supralinearly, while for very strong inputs it approaches a regime of tight balance. We show that when this latter regime is globally balanced, SSN cannot exhibit strong normalization for any input strength; thus, in SSN too, significant normalization requires localized balance. In summary, we causally and quantitatively connect a fundamental feature of cortical dynamics with a canonical brain computation. Time allowing I will also cover our work extending a normative theoretical account of normalization which explains it as an example of efficient coding of natural stimuli. We show that when biological noise is accounted for, this theory makes the same prediction as the SSN: a transition to supralinear integration for weak stimuli.

SeminarPhysics of Life

Emergence of homochirality in large molecular systems

David Lacoste
ESPCI
Apr 21, 2022

The question of the origin of homochirality of living matter, or the dominance of one handedness for all molecules of life across the entire biosphere, is a long-standing puzzle in the research on the Origin of Life. In the fifties, Frank proposed a mechanism to explain homochirality based on the properties of a simple autocatalytic network containing only a few chemical species. Following this work, chemists struggled to find experimental realizations of this model, possibly due to a lack of proper methods to identify autocatalysis [1]. In any case, a model based on a few chemical species seems rather limited, because prebiotic earth is likely to have consisted of complex ‘soups’ of chemicals. To include this aspect of the problem, we recently proposed a mechanism based on certain features of large out-of-equilibrium chemical networks [2]. We showed that a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. Through an analysis of large chemical databases, we showed that there is no need for very large molecules for chiral species to dominate over achiral ones; it already happens when molecules contain about 10 heavy atoms. We also analyzed the various conventions used to measure chirality and discussed the relative chiral signs adopted by different groups of molecules [3]. We then proposed a generalization of Frank’s model for large chemical networks, which we characterized using random matrix theory. This analysis includes sparse networks, suggesting that the emergence of homochirality is a robust and generic transition. References: [1] A. Blokhuis, D. Lacoste, and P. Nghe, PNAS (2020), 117, 25230. [2] G. Laurent, D. Lacoste, and P. Gaspard, PNAS (2021) 118 (3) e2012741118. [3] G. Laurent, D. Lacoste, and P. Gaspard, Proc. R. Soc. A 478:20210590 (2022).

SeminarNeuroscienceRecording

Do Capuchin Monkeys, Chimpanzees and Children form Overhypotheses from Minimal Input? A Hierarchical Bayesian Modelling Approach

Elisa Felsche
Max Planck Institute for Evolutionary Anthropology
Mar 9, 2022

Abstract concepts are a powerful tool to store information efficiently and to make wide-ranging predictions in new situations based on sparse data. Whereas looking-time studies point towards an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often show a failure to detect abstract concepts like same and different until the late preschool years. Similarly, non-human animals have difficulties solving those tasks and often succeed only after long training regimes. Given the huge influence of small task modifications, there is an ongoing debate about the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning abilities. Here, we applied the concept of “overhypotheses” which is well known in the infant and cognitive modeling literature to study the capabilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design. In a series of studies, participants themselves sampled reward items from multiple containers or witnessed the sampling process. Only when they detected the abstract pattern governing the reward distributions within and across containers, they could optimally guide their behavior and maximize the reward outcome in a novel test situation. We compared each species’ performance to the predictions of a probabilistic hierarchical Bayesian model capable of forming overhypotheses at a first and second level of abstraction and adapted to their species-specific reward preferences.

SeminarNeuroscience

Individual differences in visual (mis)perception: a multivariate statistical approach

Aline Cretenoud
Laboratory of Psychophysics, BMI, SV, EPFL
Dec 7, 2021

Common factors are omnipresent in everyday life, e.g., it is widely held that there is a common factor g for intelligence. In vision, however, there seems to be a multitude of specific factors rather than a strong and unique common factor. In my thesis, I first examined the multidimensionality of the structure underlying visual illusions. To this aim, the susceptibility to various visual illusions was measured. In addition, subjects were tested with variants of the same illusion, which differed in spatial features, luminance, orientation, or contextual conditions. Only weak correlations were observed between the susceptibility to different visual illusions. An individual showing a strong susceptibility to one visual illusion does not necessarily show a strong susceptibility to other visual illusions, suggesting that the structure underlying visual illusions is multifactorial. In contrast, there were strong correlations between the susceptibility to variants of the same illusion. Hence, factors seem to be illusion-specific but not feature-specific. Second, I investigated whether a strong visual factor emerges in healthy elderly and patients with schizophrenia, which may be expected from the general decline in perceptual abilities usually reported in these two populations compared to healthy young adults. Similarly, a strong visual factor may emerge in action video gamers, who often show enhanced perceptual performance compared to non-video gamers. Hence, healthy elderly, patients with schizophrenia, and action video gamers were tested with a battery of visual tasks, such as a contrast detection and orientation discrimination task. As in control groups, between-task correlations were weak in general, which argues against the emergence of a strong common factor for vision in these populations. While similar tasks are usually assumed to rely on similar neural mechanisms, the performances in different visual tasks were only weakly related to each other, i.e., performance does not generalize across visual tasks. These results highlight the relevance of an individual differences approach to unravel the multidimensionality of the visual structure.

SeminarNeuroscienceRecording

NMC4 Short Talk: Untangling Contributions of Distinct Features of Images to Object Processing in Inferotemporal Cortex

Hanxiao Lu
Yale University
Nov 30, 2021

How do humans perceive daily objects of various features and categorize these seemingly intuitive and effortless mental representations? Prior literature focusing on the role of the inferotemporal region (IT) has revealed object category clustering that is consistent with the semantic predefined structure (superordinate, ordinate, subordinate). It has however been debated whether the neural signals in the IT regions are a reflection of such categorical hierarchy [Wen et al.,2018; Bracci et al., 2017]. Visual attributes of images that correlated with semantic and category dimensions may have confounded these prior results. Our study aimed to address this debate by building and comparing models using the DNN AlexNet, to explain the variance in representational dissimilarity matrix (RDM) of neural signals in the IT region. We found that mid and high level perceptual attributes of the DNN model contribute the most to neural RDMs in the IT region. Semantic categories, as in predefined structure, were moderately correlated with mid to high DNN layers (r = [0.24 - 0.36]). Variance partitioning analysis also showed that the IT neural representations were mostly explained by DNN layers, while semantic categorical RDMs brought little additional information. In light of these results, we propose future works should focus more on the specific role IT plays in facilitating the extraction and coding of visual features that lead to the emergence of categorical conceptualizations.

SeminarNeuroscienceRecording

NMC4 Short Talk: Synchronization in the Connectome: Metastable oscillatory modes emerge from interactions in the brain spacetime network

Francesca Castaldo
University College London
Nov 30, 2021

The brain exhibits a rich repertoire of oscillatory patterns organized in space, time and frequency. However, despite ever more-detailed characterizations of spectrally-resolved network patterns, the principles governing oscillatory activity at the system-level remain unclear. Here, we propose that the transient emergence of spatially organized brain rhythms are signatures of weakly stable synchronization between subsets of brain areas, naturally occurring at reduced collective frequencies due to the presence of time delays. To test this mechanism, we build a reduced network model representing interactions between local neuronal populations (with damped oscillatory response at 40Hz) coupled in the human neuroanatomical network. Following theoretical predictions, weakly stable cluster synchronization drives a rich repertoire of short-lived (or metastable) oscillatory modes, whose frequency inversely depends on the number of units, the strength of coupling and the propagation times. Despite the significant degree of reduction, we find a range of model parameters where the frequencies of collective oscillations fall in the range of typical brain rhythms, leading to an optimal fit of the power spectra of magnetoencephalographic signals from 89 heathy individuals. These findings provide a mechanistic scenario for the spontaneous emergence of frequency-specific long-range phase-coupling observed in magneto- and electroencephalographic signals as signatures of resonant modes emerging in the space-time structure of the Connectome, reinforcing the importance of incorporating realistic time delays in network models of oscillatory brain activity.

SeminarNeuroscience

Synaptic plasticity controls the emergence of population-wide invariant representations in balanced network models

Tatjana Tchumatcheko
University of Bonn
Nov 9, 2021

The intensity and features of sensory stimuli are encoded in the activity of neurons in the cortex. In the visual and piriform cortices, the stimulus intensity re-scales the activity of the population without changing its selectivity for the stimulus features. The cortical representation of the stimulus is therefore intensity-invariant. This emergence of network invariant representations appears robust to local changes in synaptic strength induced by synaptic plasticity, even though: i) synaptic plasticity can potentiate or depress connections between neurons in a feature-dependent manner, and ii) in networks with balanced excitation and inhibition, synaptic plasticity determines the non-linear network behavior. In this study, we investigate the consistency of invariant representations with a variety of synaptic states in balanced networks. By using mean-field models and spiking network simulations, we show how the synaptic state controls the emergence of intensity-invariant or intensity-dependent selectivity by inducing changes in the network response to intensity. In particular, we demonstrate how facilitating synaptic states can sharpen the network selectivity while depressing states broaden it. We also show how power-law-type synapses permit the emergence of invariant network selectivity and how this plasticity can be generated by a mix of different plasticity rules. Our results explain how the physiology of individual synapses is linked to the emergence of invariant representations of sensory stimuli at the network level.

SeminarNeuroscienceRecording

Transdiagnostic approaches to understanding neurodevelopment

Duncan Astle
MRC Cognition and Brain Sciences Unit, University of Cambridge
Nov 8, 2021

Macroscopic brain organisation emerges early in life, even prenatally, and continues to develop through adolescence and into early adulthood. The emergence and continual refinement of large-scale brain networks, connecting neuronal populations across anatomical distance, allows for increasing functional integration and specialisation. This process is thought crucial for the emergence of complex cognitive processes. But how and why is this process so diverse? We used structural neuroimaging collected from a large diverse cohort, to explore how different features of macroscopic brain organisation are associated with diverse cognitive trajectories. We used diffusion-weighted imaging (DWI) to construct whole-brain white-matter connectomes. A simulated attack on each child's connectome revealed that some brain networks were strongly organized around highly connected 'hubs'. The more children's brains were critically dependent on hubs, the better their cognitive skills. Conversely, having poorly integrated hubs was a very strong risk factor for cognitive and learning difficulties across the sample. We subsequently developed a computational framework, using generative network modelling (GNM), to model the emergence of this kind of connectome organisation. Relatively subtle changes within the wiring rules of this computational framework give rise to differential developmental trajectories, because of small biases in the preferential wiring properties of different nodes within the network. Finally, we were able to use this GNM to implicate the molecular and cellular processes that govern these different growth patterns.

SeminarNeuroscienceRecording

Edge Computing using Spiking Neural Networks

Shirin Dora
Loughborough University
Nov 4, 2021

Deep learning has made tremendous progress in the last year but it's high computational and memory requirements impose challenges in using deep learning on edge devices. There has been some progress in lowering memory requirements of deep neural networks (for instance, use of half-precision) but there has been minimal effort in developing alternative efficient computational paradigms. Inspired by the brain, Spiking Neural Networks (SNN) provide an energy-efficient alternative to conventional rate-based neural networks. However, SNN architectures that employ the traditional feedforward and feedback pass do not fully exploit the asynchronous event-based processing paradigm of SNNs. In the first part of my talk, I will present my work on predictive coding which offers a fundamentally different approach to developing neural networks that are particularly suitable for event-based processing. In the second part of my talk, I will present our work on development of approaches for SNNs that target specific problems like low response latency and continual learning. References Dora, S., Bohte, S. M., & Pennartz, C. (2021). Deep Gated Hebbian Predictive Coding Accounts for Emergence of Complex Neural Response Properties Along the Visual Cortical Hierarchy. Frontiers in Computational Neuroscience, 65. Saranirad, V., McGinnity, T. M., Dora, S., & Coyle, D. (2021, July). DoB-SNN: A New Neuron Assembly-Inspired Spiking Neural Network for Pattern Classification. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-6). IEEE. Machingal, P., Thousif, M., Dora, S., Sundaram, S., Meng, Q. (2021). A Cross Entropy Loss for Spiking Neural Networks. Expert Systems with Applications (under review).

SeminarNeuroscience

Representation transfer and signal denoising through topographic modularity

Barna Zajzon
Morrison lab, Forschungszentrum Jülich, Germany
Nov 3, 2021

To prevail in a dynamic and noisy environment, the brain must create reliable and meaningful representations from sensory inputs that are often ambiguous or corrupt. Since only information that permeates the cortical hierarchy can influence sensory perception and decision-making, it is critical that noisy external stimuli are encoded and propagated through different processing stages with minimal signal degradation. Here we hypothesize that stimulus-specific pathways akin to cortical topographic maps may provide the structural scaffold for such signal routing. We investigate whether the feature-specific pathways within such maps, characterized by the preservation of the relative organization of cells between distinct populations, can guide and route stimulus information throughout the system while retaining representational fidelity. We demonstrate that, in a large modular circuit of spiking neurons comprising multiple sub-networks, topographic projections are not only necessary for accurate propagation of stimulus representations, but can also help the system reduce sensory and intrinsic noise. Moreover, by regulating the effective connectivity and local E/I balance, modular topographic precision enables the system to gradually improve its internal representations and increase signal-to-noise ratio as the input signal passes through the network. Such a denoising function arises beyond a critical transition point in the sharpness of the feed-forward projections, and is characterized by the emergence of inhibition-dominated regimes where population responses along stimulated maps are amplified and others are weakened. Our results indicate that this is a generalizable and robust structural effect, largely independent of the underlying model specificities. Using mean-field approximations, we gain deeper insight into the mechanisms responsible for the qualitative changes in the system’s behavior and show that these depend only on the modular topographic connectivity and stimulus intensity. The general dynamical principle revealed by the theoretical predictions suggest that such a denoising property may be a universal, system-agnostic feature of topographic maps, and may lead to a wide range of behaviorally relevant regimes observed under various experimental conditions: maintaining stable representations of multiple stimuli across cortical circuits; amplifying certain features while suppressing others (winner-take-all circuits); and endow circuits with metastable dynamics (winnerless competition), assumed to be fundamental in a variety of tasks.

SeminarNeuroscienceRecording

Self-organized formation of discrete grid cell modules from smooth gradients

Sarthak Chandra
Fiete lab, MIT
Nov 2, 2021

Modular structures in myriad forms — genetic, structural, functional — are ubiquitous in the brain. While modularization may be shaped by genetic instruction or extensive learning, the mechanisms of module emergence are poorly understood. Here, we explore complementary mechanisms in the form of bottom-up dynamics that push systems spontaneously toward modularization. As a paradigmatic example of modularity in the brain, we focus on the grid cell system. Grid cells of the mammalian medial entorhinal cortex (mEC) exhibit periodic lattice-like tuning curves in their encoding of space as animals navigate the world. Nearby grid cells have identical lattice periods, but at larger separations along the long axis of mEC the period jumps in discrete steps so that the full set of periods cluster into 5-7 discrete modules. These modules endow the grid code with many striking properties such as an exponential capacity to represent space and unprecedented robustness to noise. However, the formation of discrete modules is puzzling given that biophysical properties of mEC stellate cells (including inhibitory inputs from PV interneurons, time constants of EPSPs, intrinsic resonance frequency and differences in gene expression) vary smoothly in continuous topographic gradients along the mEC. How does discreteness in grid modules arise from continuous gradients? We propose a novel mechanism involving two simple types of lateral interaction that leads a continuous network to robustly decompose into discrete functional modules. We show analytically that this mechanism is a generic multi-scale linear instability that converts smooth gradients into discrete modules via a topological “peak selection” process. Further, this model generates detailed predictions about the sequence of adjacent period ratios, and explains existing grid cell data better than existing models. Thus, we contribute a robust new principle for bottom-up module formation in biology, and show that it might be leveraged by grid cells in the brain.

SeminarPhysics of LifeRecording

Mutation induced infection waves in diseases like COVID-19

Fabian Jan Schwarzendahl
Heinrich Heine University, Dusseldorf
Oct 10, 2021

After more than 4 million deaths worldwide, the ongoing vaccination to conquer the COVID-19 disease is now competing with the emergence of increasingly contagious mutations, repeatedly supplanting earlier strains. Following the near-absence of historical examples of the long-time evolution of infectious diseases under similar circumstances, models are crucial to exemplify possible scenarios. Accordingly, in the present work we systematically generalize the popular susceptible-infected-recovered model to account for mutations leading to repeatedly occurring new strains, which we coarse grain based on tools from statistical mechanics to derive a model predicting the most likely outcomes. The model predicts that mutations can induce a super exponential growth of infection numbers at early times, which self-amplify to giant infection waves which are caused by a positive feedback loop between infection numbers and mutations and lead to a simultaneous infection of the majority of the population. At later stages -- if vaccination progresses too slowly -- mutations can interrupt an ongoing decrease of infection numbers and can cause infection revivals which occur as single waves or even as whole wave trains featuring alternative periods of decreasing and increasing infection numbers. Our results might be useful for discussions regarding the importance of a release of vaccine-patents to reduce the risk of mutation-induced infection revivals but also to coordinate the release of measures following a downwards trend of infection numbers.

SeminarNeuroscienceRecording

Reverse engineering Hydra

Adrienne Fairhall
University of Washington
Oct 7, 2021

Hydra is an extraordinary creature. Continuously replacing itself, it can live indefinitely, performing a stable repertoire of reasonably sophisticated behaviors. This remarkable stability under plasticity may be due to the uniform nature of its nervous system, which consists of two apparently noncommunicating nerve net layers. We use modeling to understand the role of active muscles and biomechanics interact with neural activity to shape Hydra behaviour. We will discuss our findings and thoughts on how this simple nervous system may self-organize to produce purposeful behavior.

SeminarNeuroscienceRecording

Physical Computation in Insect Swarms

Orit Peleg
University of Colorado Boulder & Santa Fe Institute
Oct 7, 2021

Our world is full of living creatures that must share information to survive and reproduce. As humans, we easily forget how hard it is to communicate within natural environments. So how do organisms solve this challenge, using only natural resources? Ideas from computer science, physics and mathematics, such as energetic cost, compression, and detectability, define universal criteria that almost all communication systems must meet. We use insect swarms as a model system for identifying how organisms harness the dynamics of communication signals, perform spatiotemporal integration of these signals, and propagate those signals to neighboring organisms. In this talk I will focus on two types of communication in insect swarms: visual communication, in which fireflies communicate over long distances using light signals, and chemical communication, in which bees serve as signal amplifiers to propagate pheromone-based information about the queen’s location.

SeminarNeuroscienceRecording

Collective Construction in Natural and Artificial Swarms

Justin Werfel
Harvard University
Oct 7, 2021

Natural systems provide both puzzles to unravel and demonstrations of what's possible. The natural world is full of complex systems of dynamically interchangeable, individually unreliable components that produce effective and reliable outcomes at the group level. A complementary goal to understanding the operation of such systems is that of being able to engineer artifacts that work in a similar way. One notable type of collective behavior is collective construction, epitomized by mound-building termites, which build towering, intricate mounds through the joint activity of millions of independent and limited insects. The artificial counterpart would be swarms of robots designed to build human-relevant structures. I will discuss work on both aspects of the problem, including studies of cues that individual termite workers use to help direct their actions and coordinate colony activity, and development of robot systems that build user-specified structures despite limited information and unpredictable variability in the process. These examples illustrate principles used by the insects and show how they can be applied in systems we create.

SeminarNeuroscienceRecording

Tuning dumb neurons to task processing - via homeostasis

Viola Priesemann
Max Planck Institute for Dynamics and Self-organization
Oct 7, 2021

Homeostatic plasticity plays a key role in stabilizing neural network activity. But what is its role in neural information processing? We showed analytically how homeostasis changes collective dynamics and consequently information flow - depending on the input to the network. We then studied how input and homeostasis on a recurrent network of LIF neurons impacts information flow and task performance. We showed how we can tune the working point of the network, and found that, contrary to previous assumptions, there is not one optimal working point for a family of tasks, but each task may require its own working point.

SeminarNeuroscienceRecording

Swarms for people

Sabine Hauert
University of Bristol
Oct 7, 2021

As tiny robots become individually more sophisticated, and larger robots easier to mass produce, a breakdown of conventional disciplinary silos is enabling swarm engineering to be adopted across scales and applications, from nanomedicine to treat cancer, to cm-sized robots for large-scale environmental monitoring or intralogistics. This convergence of capabilities is facilitating the transfer of lessons learned from one scale to the other. Cm-sized robots that work in the 1000s may operate in a way similar to reaction-diffusion systems at the nanoscale, while sophisticated microrobots may have individual capabilities that allow them to achieve swarm behaviour reminiscent of larger robots with memory, computation, and communication. Although the physics of these systems are fundamentally different, much of their emergent swarm behaviours can be abstracted to their ability to move and react to their local environment. This presents an opportunity to build a unified framework for the engineering of swarms across scales that makes use of machine learning to automatically discover suitable agent designs and behaviours, digital twins to seamlessly move between the digital and physical world, and user studies to explore how to make swarms safe and trustworthy. Such a framework would push the envelope of swarm capabilities, towards making swarms for people.

SeminarNeuroscienceRecording

The Geometry of Decision-Making

Iain Couzin
Max Planck Institute of Animal Behavior & University of Konstanz
Oct 7, 2021

Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges, to choosing with whom to associate. Here, using an integrated theoretical and experimental approach (employing immersive Virtual Reality), with both invertebrate and vertebrate models—the fruit fly, desert locust and zebrafish—we consider the recursive interplay between movement and collective vectorial integration in the brain during decision-making regarding options (potential ‘targets’) in space. We reveal that the brain repeatedly breaks multi-choice decisions into a series of abrupt (critical) binary decisions in space-time where organisms switch, spontaneously, from averaging vectorial information among, to suddenly excluding one of, the remaining options. This bifurcation process repeats until only one option—the one ultimately selected—remains. Close to each bifurcation the ‘susceptibility’ of the system exhibits a sharp increase, inevitably causing small differences among the remaining options to become amplified; a property that both comes ‘for free’ and is highly desirable for decision-making. This mechanism facilitates highly effective decision-making, and is shown to be robust both to the number of options available, and to context, such as whether options are static (e.g. refuges) or mobile (e.g. other animals). In addition, we find evidence that the same geometric principles of decision-making occur across scales of biological organisation, from neural dynamics to animal collectives, suggesting they are fundamental features of spatiotemporal computation.

SeminarPhysics of LifeRecording

Do leader cells drive collective behavior in Dictyostelium Discoideum amoeba colonies?

Sulimon Sattari
Hokkaido University
Aug 1, 2021

Dictyostelium Discoideum (DD) are a fascinating single-cellular organism. When nutrients are plentiful, the DD cells act as autonomous individuals foraging their local vicinity. At the onset of starvation, a few (<0.1%) cells begin communicating with others by emitting a spike in the chemoattractant protein cyclic-AMP. Nearby cells sense the chemical gradient and respond by moving toward it and emitting a cyclic-AMP spike of their own. Cyclic-AMP activity increases over time, and eventually a spiral wave emerges, attracting hundreds of thousands of cells to an aggregation center. How DD cells go from autonomous individuals to a collective entity remains an open question for more than 60 years--a question whose answer would shed light on the emergence of multi-cellular life. Recently, trans-scale imaging has allowed the ability to sense the cyclic-AMP activity at both cell and colony levels. Using both the images as well as toy simulation models, this research aims to clarify whether the activity at the colony level is in fact initiated by a few cells, which may be deemed "leader" or "pacemaker" cells. In this talk, I will demonstrate the use of information-theoretic techniques to classify leaders and followers based on trajectory data, as well as to infer the domain of interaction of leader cells. We validate the techniques on toy models where leaders and followers are known, and then try to answer the question in real data--do leader cells drive collective behavior in DD colonies?

SeminarNeuroscience

Understanding Perceptual Priors with Massive Online Experiments

Nori Jacoby
Max Planck for empirical Aesthetics
Jul 13, 2021

One of the most important questions in psychology and neuroscience is understanding how the outside world maps to internal representations. Classical psychophysics approaches to this problem have a number of limitations: they mostly study low dimensional perpetual spaces, and are constrained in the number and diversity of participants and experiments. As ecologically valid perception is rich, high dimensional, contextual, and culturally dependent, these impediments severely bias our understanding of perceptual representations. Recent technological advances—the emergence of so-called “Virtual Labs”— can significantly contribute toward overcoming these barriers. Here I present a number of specific strategies that my group has developed in order to probe representations across a number of dimensions. 1) Massive online experiments can increase significantly the amount of participants and experiments that can be carried out in a single study, while also significantly diversifying the participant pool. We have developed a platform, PsyNet, that enables “experiments as code,” whereby the orchestration of computer servers, recruiting, compensation of participants, and data management is fully automated and every experiment can be fully replicated with one command line. I will demonstrate how PsyNet allows us to recruit thousands of participants for each study with a large number of control experimental conditions, significantly increasing our understanding of auditory perception. 2) Virtual lab methods also enable us to run experiments that are nearly impossible in a traditional lab setting. I will demonstrate our development of adaptive sampling, a set of behavioural methods that combine machine learning sampling techniques (Monte Carlo Markov Chains) with human interactions and allow us to create high-dimensional maps of perceptual representations with unprecedented resolution. 3) Finally, I will demonstrate how the aforementioned methods can be applied to the study of perceptual priors in both audition and vision, with a focus on our work in cross-cultural research, which studies how perceptual priors are influenced by experience and culture in diverse samples of participants from around the world.

SeminarNeuroscienceRecording

The emergence of a ‘V1 like’ structure for soundscapes representing vision in the adult brain in the absence of visual experience

Amir Amedi
IDC
Jul 5, 2021
SeminarNeuroscience

Agency through Physical Lenses

Jenann Ismael
Columbia University
Jun 23, 2021

I will offer a broad-brush account of what explains the emergence of agents from a physics perspective, what sorts of conditions have to be in place for them to arise, and the essential features of agents when they are viewed through the lenses of physics. One implication will be a tight link to informational asymmetries associated with the thermodynamic gradient. Another will be a reversal of the direction of explanation from the one that is usually assumed in physical discussions. In in an evolved system, while it is true in some sense that the macroscopic behavior is the way it is because of the low-level dynamics, there is another sense in which the low-level dynamics is the way that it is because of the high-level behavior it supports. (More precisely and accurately, the constraints on the configuration of its components that define system as the kind of system it is are the way they are to exploit the low-level dynamics to produce the emergent behavior.) Another will be some insight into what might make human agency special.

SeminarNeuroscience

Evolving Neural Networks

Paul Cisek, Tony Zador, Ida Momennejad, Dayu Lin, Robert Yang
Jun 16, 2021

Evolution has shaped neural circuits in a very specific manner, slowly and aimlessly incorporating computational innovations that increased the chances to survive and reproduce of the newly born species. The discoveries done by the Evolutionary Developmental (Evo-Devo) biology field during the last decades have been crucial for our understanding of the gradual emergence of such innovations. In turn, Computational Neuroscience practitioners modeling the brain are becoming increasingly aware of the need to build models that incorporate these innovations to replicate the computational strategies used by the brain to solve a given task. The goal of this workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.

SeminarNeuroscienceRecording

The collective behavior of the clonal raider ant: computations, patterns, and naturalistic behavior

Asaf Gal
University of Rockefeller, NYC
May 4, 2021

Colonies of ants and other eusocial insects are superorganisms, which perform sophisticated cognitive-like functions at the level of the group. In my talk I will review our efforts to establish the clonal raider ant Ooceraea biroi as a lab model system for the systematic study of the principles underlying collective information processing in ant colonies. I will use results from two separate projects to demonstrate the potential of this model system: In the first, we analyze the foraging behavior of the species, known as group raiding: a swift offensive response of a colony to the detection of a potential prey by a scout. By using automated behavioral tracking and detailed analysis we show that this behavior is closely related to the army ant mass raid, an iconic collective behavior in which hundreds of thousands of ants spontaneously leave the nest to go hunting, and that the evolutionary transition between the two can be explained by a change in colony size alone. In the second project, we study the emergence of a collective sensory response threshold in a colony. The sensory threshold is a fundamental computational primitive, observed across many biological systems. By carefully controlling the sensory environment and the social structure of the colonies we were able to show that it also appear in a collective context, and that it emerges out of a balance between excitatory and inhibitory interactions between ants. Furthermore, by using a mathematical model we predict that these two interactions can be mapped into known mechanisms of communication in ants. Finally, I will discuss the opportunities for understanding collective behavior that are opening up by the development of methods for neuroimaging and neurocontrol of our ants.

SeminarNeuroscienceRecording

Recurrent network dynamics lead to interference in sequential learning

Friedrich Schuessler
Barak lab, Technion, Haifa, Israel
Apr 28, 2021

Learning in real life is often sequential: A learner first learns task A, then task B. If the tasks are related, the learner may adapt the previously learned representation instead of generating a new one from scratch. Adaptation may ease learning task B but may also decrease the performance on task A. Such interference has been observed in experimental and machine learning studies. In the latter case, it is mediated by correlations between weight updates for the different tasks. In typical applications, like image classification with feed-forward networks, these correlated weight updates can be traced back to input correlations. For many neuroscience tasks, however, networks need to not only transform the input, but also generate substantial internal dynamics. Here we illuminate the role of internal dynamics for interference in recurrent neural networks (RNNs). We analyze RNNs trained sequentially on neuroscience tasks with gradient descent and observe forgetting even for orthogonal tasks. We find that the degree of interference changes systematically with tasks properties, especially with emphasis on input-driven over autonomously generated dynamics. To better understand our numerical observations, we thoroughly analyze a simple model of working memory: For task A, a network is presented with an input pattern and trained to generate a fixed point aligned with this pattern. For task B, the network has to memorize a second, orthogonal pattern. Adapting an existing representation corresponds to the rotation of the fixed point in phase space, as opposed to the emergence of a new one. We show that the two modes of learning – rotation vs. new formation – are directly linked to recurrent vs. input-driven dynamics. We make this notion precise in a further simplified, analytically tractable model, where learning is restricted to a 2x2 matrix. In our analysis of trained RNNs, we also make the surprising observation that, across different tasks, larger random initial connectivity reduces interference. Analyzing the fixed point task reveals the underlying mechanism: The random connectivity strongly accelerates the learning mode of new formation, and has less effect on rotation. The prior thus wins the race to zero loss, and interference is reduced. Altogether, our work offers a new perspective on sequential learning in recurrent networks, and the emphasis on internally generated dynamics allows us to take the history of individual learners into account.

SeminarNeuroscience

All optical interrogation of developing GABAergic circuits in vivo

Rosa Cossart
Mediterranean Neurobiology Institute, Faculté de Médecine, Aix-Marseille Université, Marseille, France
Mar 16, 2021

The developmental journey of cortical interneurons encounters several activity-dependent milestones. During the early postnatal period in developing mice, GABAergic neurons are transient preferential recipients of thalamic inputs and undergo activity-dependent migration arrest, wiring and programmed cell-death. But cortical GABAergic neurons are also specified by very early developmental programs. For example, the earliest born GABAergic neurons develop into hub cells coordinating spontaneous activity in hippocampal slices. Despite their importance for the emergence of sensory experience, their role in coordinating network dynamics, and the role of activity in their integration into cortical networks, the collective in vivo dynamics of GABAergic neurons during the neonatal postnatal period remain unknown. Here, I will present data related to the coordinated activity between GABAergic cells of the mouse barrel cortex and hippocampus in non-anesthetized pups using the recent development of all optical methods to record and manipulate neuronal activity in vivo. I will show that the functional structure of developing GABAergic circuits is remarkably patterned, with segregated assemblies of prospective parvalbumin neurons and highly connected hub cells, both shaped by sensory-dependent processes.

SeminarNeuroscience

LAB COGNITION GOING WILD: Field experiments on vervet monkeys'

Erica van de Wall
Universite de Lausanne
Mar 14, 2021

I will present field experiments on vervet monkeys testing physical and social cognition, with a focus on social learning. The understanding of the emergence of cultural behaviours in animals has advanced significantly with contributions from complementary approaches: natural observations and controlled field experiments. Experiments with wild vervet monkeys highlight that monkeys are selective about ‘who’ they learn from socially and that they will abandon personal foraging preferences in favour of group norms new to them. The reported findings highlight the feasibility to study cognition under field conditions.

SeminarNeuroscience

A generative n​etwork model of neurodevelopment

Danyal Akarca
University of Cambridge, MRC Cognition and Brain Sciences Unit
Feb 23, 2021

The emergence of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms govern the diversity of these developmental processes? There are many existing descriptive theories, but to date none are computationally formalized. We provide a mathematical framework that specifies the growth of a brain network over developmental time. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over development. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the developmental simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity of childhood brain development, capable of integrating different levels of analysis – from genes to cognition. (Pre-print: https://www.biorxiv.org/content/10.1101/2020.08.13.249391v1)

SeminarNeuroscienceRecording

The emergence and plasticity of visual domain organization in the cerebral hemispheres

Marlene Behrmann
CMU
Feb 22, 2021
SeminarNeuroscienceRecording

Emergence of long time scales in data-driven network models of zebrafish activity

Remi Monasson
CNRS
Feb 9, 2021

How can neural networks exhibit persistent activity on time scales much larger than allowed by cellular properties? We address this question in the context of larval zebrafish, a model vertebrate that is accessible to brain-scale neuronal recording and high-throughput behavioral studies. We study in particular the dynamics of a bilaterally distributed circuit, the so-called ARTR, including hundreds neurons. ARTR exhibits slow antiphasic alternations between its left and right subpopulations, which can be modulated by the water temperature, and drive the coordinated orientation of swim bouts, thus organizing the fish spatial exploration. To elucidate the mechanism leading to the slow self-oscillation, we train a network graphical model (Ising) on neural recordings. Sampling the inferred model allows us to generate synthetic oscillatory activity, whose features correctly capture the observed dynamics. A mean-field analysis of the inferred model reveals the existence several phases; activated crossing of the barriers in between those phases controls the long time scales present in the network oscillations. We show in particular how the barrier heights and the nature of the phases vary with the water temperature.

SeminarNeuroscienceRecording

Analogy as a Catalyst for Cumulative Cultural Evolution

Lotty Brand
University of Sheffield
Jan 27, 2021

Analogies, broadly defined, map novel concepts onto familiar concepts, making them essential for perception, reasoning, and communication. We argue that analogy-building served a critical role in the evolution of cumulative culture, by allowing humans to learn and transmit complex behavioural sequences that would otherwise be too cognitively demanding or opaque to acquire. The emergence of a protolanguage consisting of simple labels would have provided early humans with the cognitive tools to build explicit analogies and to communicate them to others. This focus on analogy-building can shed new light on the coevolution of cognition and culture, and addresses recent calls for better integration of the field of cultural evolution with cognitive science. This talk will address what cumulative cultural evolution is, how we define analogy-building, how analogy-building applies to cumulative cultural evolution, how analogy-building fits into language evolution, and the implications of analogy-building for causal understanding and cognitive evolution.

ePoster

Emergence of Synfire Chains in Functional Multi-Layer Spiking Neural Networks

Jonas Oberste-Frielinghaus, Anno Kurth, Julian Göltz, Laura Kriener, Junji Ito, Mihai Petrovici, Sonja Grün

Bernstein Conference 2024

ePoster

Quantitative modeling of the emergence of macroscopic grid-like representations

Ikhwan Bin Khalid, Eric Reifenstein, Naomi Auer, Lukas Kunz, Richard Kempter

Bernstein Conference 2024

ePoster

Emergence of functional circuits in the absence of neural activity

COSYNE 2022

ePoster

Emergence of convolutional structure in neural circuits

COSYNE 2022

ePoster

The emergence of fixed points in interlimb coordination underlies the learning of novel gaits in mice

COSYNE 2022

ePoster

The emergence of gamma oscillations as a signature of gain control during context integration.

COSYNE 2022

ePoster

Emergence of modular patterned activity in developing cortex through intracortical network interactions

COSYNE 2022

ePoster

Emergence of time persistence in an interpretable data-driven neural network model

COSYNE 2022

ePoster

Emergence of an orientation map in the mouse superior colliculus from stage III retinal waves

COSYNE 2022

ePoster

Spontaneous emergence of magnitude comparison units in untrained deep neural networks

COSYNE 2022

ePoster

Spontaneous emergence of magnitude comparison units in untrained deep neural networks

COSYNE 2022

ePoster

Language emergence in reinforcement learning agents performing navigational tasks

Tobias Wieczorek, Maximilian Eggl, Tatjana Tchumatchenko, Carlos Wert Carvajal

COSYNE 2023

ePoster

Emergence of heterogeneous weight-distributions in functionally similar neurons

Weishun Zhong, Haim Sompolinsky

COSYNE 2025

ePoster

Emergence of robust persistent activity in premotor cortex across learning

Catherine Wang, Taiga Abe, Shaul Druckmann, Nuo Li

COSYNE 2025

ePoster

A global learning rate allows rapid emergence of near-optimal foraging across many options

Laura Grima, Yipei Guo, Lakshmi Narayan, Ann Hermundstad, Joshua Dudman

COSYNE 2025

ePoster

Rapid emergence of latent knowledge in the sensory cortex drives learning

Celine Drieu, Ziyi Zhu, Joy Wang, Kishore V. Kuchibhotla, Kylie Fuller, Aaron Wang, Sarah Elnozahy

COSYNE 2025

ePoster

Cell type emergence in the developing medial entorhinal cortex is regulated by Bcl11b

Keagan Dunville, Bianca Ana Zaharia, Kristian Moan, Rajeevkumar R Nair, Clifford G Kentros, Giulia Quattrocolo

FENS Forum 2024

ePoster

Emergence of cerebellar spontaneous activity patterns during embryonic and postnatal development

Martina Riva, Cristian Arnal-Real, Juan Antonio Moreno-Bravo

FENS Forum 2024

ePoster

Emergence of corpora amylacea in the aging human brain and in Alzheimer’s disease

Daniel Heinzer-Avar, Eric Sun, Pauline Chu, Dhananjay Wagh, Hannes Vogel, Anne Brunet

FENS Forum 2024

ePoster

Emergence of different spatial cognitive maps in CA1 for rats performing an episodic memory task using egocentric and allocentric navigational strategies

Elena Faillace, Francesco Gobbo, Rufus Mitchell-Heggs, Adrian J. Duskiewicz, Patrick Spooner, Richard G.M. Morris, Simon R. Schultz

FENS Forum 2024

ePoster

Emergence of NMDA-spikes: Unraveling network dynamics in pyramidal neurons

Michael Dick, Joshua Böttcher, David Dahmen, Willem Wybo, Abigail Morrison

FENS Forum 2024

ePoster

Re-emergence of T lymphocytes-mediated synaptopathy in progressive multiple sclerosis

Federica Palmerio, Krizia Sanna, Antonio Bruno, Sara Balletta, Silvia Caioli, Monica Nencini, Diego Fresegna, Livia Guadalupi, Ettore Dolcetti, Federica Azzolini, Fabio Buttari, Roberta Fantozzi, Angela Borrelli, Mario Stampanoni Bassi, Luana Gilio, Valentina Vanni, Francesca De Vito, Alessandra Musella, Diego Centonze, Georgia Mandolesi

FENS Forum 2024

ePoster

Slow emergence of long-term stable spatial codes in the mouse dentate gyrus

Antje Kilias, Marlene Bartos

FENS Forum 2024