Energy Efficiency
energy efficiency
Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.
General purpose event-based architectures for deep learning
Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features -- event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST
NMC4 Short Talk: Predictive coding is a consequence of energy efficiency in recurrent neural networks
Predictive coding represents a promising framework for understanding brain function, postulating that the brain continuously inhibits predictable sensory input, ensuring a preferential processing of surprising elements. A central aspect of this view on cortical computation is its hierarchical connectivity, involving recurrent message passing between excitatory bottom-up signals and inhibitory top-down feedback. Here we use computational modelling to demonstrate that such architectural hard-wiring is not necessary. Rather, predictive coding is shown to emerge as a consequence of energy efficiency, a fundamental requirement of neural processing. When training recurrent neural networks to minimise their energy consumption while operating in predictive environments, the networks self-organise into prediction and error units with appropriate inhibitory and excitatory interconnections and learn to inhibit predictable sensory input. We demonstrate that prediction units can reliably be identified through biases in their median preactivation, pointing towards a fundamental property of prediction units in the predictive coding framework. Moving beyond the view of purely top-down driven predictions, we demonstrate via virtual lesioning experiments that networks perform predictions on two timescales: fast lateral predictions among sensory units and slower prediction cycles that integrate evidence over time. Our results, which replicate across two separate data sets, suggest that predictive coding can be interpreted as a natural consequence of energy efficiency. More generally, they raise the question which other computational principles of brain function can be understood as a result of physical constraints posed by the brain, opening up a new area of bio-inspired, machine learning-powered neuroscience research.
Efficient GPU training of SNNs using approximate RTRL
Last year’s SNUFA workshop report concluded “Moving toward neuron numbers comparable with biology and applying these networks to real-world data-sets will require the development of novel algorithms, software libraries, and dedicated hardware accelerators that perform well with the specifics of spiking neural networks” [1]. Taking inspiration from machine learning libraries — where techniques such as parallel batch training minimise latency and maximise GPU occupancy — as well as our previous research on efficiently simulating SNNs on GPUs for computational neuroscience [2,3], we are extending our GeNN SNN simulator to pursue this vision. To explore GeNN’s potential, we use the eProp learning rule [4] — which approximates RTRL — to train SNN classifiers on the Spiking Heidelberg Digits and the Spiking Sequential MNIST datasets. We find that the performance of these classifiers is comparable to those trained using BPTT [5] and verify that the theoretical advantages of neuron models with adaptation dynamics [5] translate to improved classification performance. We then measured execution times and found that training an SNN classifier using GeNN and eProp becomes faster than SpyTorch and BPTT after less than 685 timesteps and much larger models can be trained on the same GPU when using GeNN. Furthermore, we demonstrate that our implementation of parallel batch training improves training performance by over 4⨉ and enables near-perfect scaling across multiple GPUs. Finally, we show that performing inference using a recurrent SNN using GeNN uses less energy and has lower latency than a comparable LSTM simulated with TensorFlow [6].
What can we further learn from the brain for artificial intelligence?
Deep learning is a prime example of how brain-inspired computing can benefit development of artificial intelligence. But what else can we learn from the brain for bringing AI and robotics to the next level? Energy efficiency and data efficiency are the major features of the brain and human cognition that today’s deep learning has yet to deliver. The brain can be seen as a multi-agent system of heterogeneous learners using different representations and algorithms. The flexible use of reactive, model-free control and model-based “mental simulation” appears to be the basis for computational and data efficiency of the brain. How the brain efficiently acquires and flexibly combines prediction and control modules is a major open problem in neuroscience and its solution should help developments of more flexible and autonomous AI and robotics.
On temporal coding in spiking neural networks with alpha synaptic function
The timing of individual neuronal spikes is essential for biological brains to make fast responses to sensory stimuli. However, conventional artificial neural networks lack the intrinsic temporal coding ability present in biological networks. We propose a spiking neural network model that encodes information in the relative timing of individual neuron spikes. In classification tasks, the output of the network is indicated by the first neuron to spike in the output layer. This temporal coding scheme allows the supervised training of the network with backpropagation, using locally exact derivatives of the postsynaptic spike times with respect to presynaptic spike times. The network operates using a biologically-plausible alpha synaptic transfer function. Additionally, we use trainable synchronisation pulses that provide bias, add flexibility during training and exploit the decay part of the alpha function. We show that such networks can be trained successfully on noisy Boolean logic tasks and on the MNIST dataset encoded in time. The results show that the spiking neural network outperforms comparable spiking models on MNIST and achieves similar quality to fully connected conventional networks with the same architecture. We also find that the spiking network spontaneously discovers two operating regimes, mirroring the accuracy-speed trade-off observed in human decision-making: a slow regime, where a decision is taken after all hidden neurons have spiked and the accuracy is very high, and a fast regime, where a decision is taken very fast but the accuracy is lower. These results demonstrate the computational power of spiking networks with biological characteristics that encode information in the timing of individual neurons. By studying temporal coding in spiking networks, we aim to create building blocks towards energy-efficient and more complex biologically-inspired neural architectures.
Effective and Efficient Computation with Multiple-timescale Spiking Recurrent Neural Networks
The emergence of brain-inspired neuromorphic computing as a paradigm for edge AI is motivating the search for high-performance and efficient spiking neural networks to run on this hardware. However, compared to classical neural networks in deep learning, current spiking neural networks lack competitive performance in compelling areas. Here, for sequential and streaming tasks, we demonstrate how spiking recurrent neural networks (SRNN) using adaptive spiking neurons are able to achieve state-of-the-art performance compared to other spiking neural networks and almost reach or exceed the performance of classical recurrent neural networks (RNNs) while exhibiting sparse activity. From this, we calculate a 100x energy improvement for our SRNNs over classical RNNs on the harder tasks. We find in particular that adapting the timescales of spiking neurons is crucial for achieving such performance, and we demonstrate the performance for SRNNs for different spiking neuron models.
Computational modelling of dentate granule cells reveals Pareto optimal trade-off between pattern separation and energy efficiency (economy)
Bernstein Conference 2024
Development of a next-generation bidirectional neurobiohybrid interface with optimized energy efficiency enabling real-time adaptive neuromodulation
FENS Forum 2024