Entrainment
entrainment
Anton Arkhipov
The Scientist will develop bio-realistic network simulations at the level of a cortical area and the whole cortex, leveraging our multimodal datasets on brain composition and connectivity and training models on in vivo data using AI approaches. The goal is to use modeling together with experiments from our collaborators to understand the mechanisms underlying brain responses to sensory stimulation, including periodic sensory stimuli and the resulting entrainment of neuronal populations.
Competing Rhythms: Understanding and Modulating Auditory Neural Entrainment
Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment
Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.
The melanopsin mosaic: exploring the diversity of non-image forming retinal ganglion cells
In this talk, I will focus on recent work that has uncovered the diversity of intrinsically photosensitive retinal ganglion cells (ipRGCs). These are a unique type of retinal ganglion cell that contains the photopigment melanopsin. ipRGCs are the retinal neurons responsible for driving non-imaging forming behaviors and reflexes, such as circadian entrainment and pupil constriction, amongst many others. My lab has recently focused on uncovering the diversity of ipRGCs, their distribution throughout the mammalian retina, and their axon projections in the brain.
Color vision circuits for primate intrinsically photosensitive retinal ganglion cells
The rising and setting of the sun is accompanied by changes in both the irradiance and the spectral distribution of the sky. Since the discovery of intrinsically photosensitive retinal ganglion cells (ipRGCs) 20 years ago, considerable progress has been made in understanding melanopsin's contributions to encoding irradiance. Much less is known about the cone inputs to ipRGCs and how they could encode changes in the color of the sky. I will summarize our recent connectomic investigation into the cone-opponent inputs to primate ipRGCs and the implications of this work on our understanding of circadian photoentrainment and the evolution of color vision.
A draft connectome for ganglion cell types of the mouse retina
The visual system of the brain is highly parallel in its architecture. This is clearly evident in the outputs of the retina, which arise from neurons called ganglion cells. Work in our lab has shown that mammalian retinas contain more than a dozen distinct types of ganglion cells. Each type appears to filter the retinal image in a unique way and to relay this processed signal to a specific set of targets in the brain. My students and I are working to understand the meaning of this parallel organization through electrophysiological and anatomical studies. We record from light-responsive ganglion cells in vitro using the whole-cell patch method. This allows us to correlate directly the visual response properties, intrinsic electrical behavior, synaptic pharmacology, dendritic morphology and axonal projections of single neurons. Other methods used in the lab include neuroanatomical tracing techniques, single-unit recording and immunohistochemistry. We seek to specify the total number of ganglion cell types, the distinguishing characteristics of each type, and the intraretinal mechanisms (structural, electrical, and synaptic) that shape their stimulus selectivities. Recent work in the lab has identified a bizarre new ganglion cell type that is also a photoreceptor, capable of responding to light even when it is synaptically uncoupled from conventional (rod and cone) photoreceptors. These ganglion cells appear to play a key role in resetting the biological clock. It is just this sort of link, between a specific cell type and a well-defined behavioral or perceptual function, that we seek to establish for the full range of ganglion cell types. My research concerns the structural and functional organization of retinal ganglion cells, the output cells of the retina whose axons make up the optic nerve. Ganglion cells exhibit great diversity both in their morphology and in their responses to light stimuli. On this basis, they are divisible into a large number of types (>15). Each ganglion-cell type appears to send its outputs to a specific set of central visual nuclei. This suggests that ganglion cell heterogeneity has evolved to provide each visual center in the brain with pre-processed representations of the visual scene tailored to its specific functional requirements. Though the outline of this story has been appreciated for some time, it has received little systematic exploration. My laboratory is addressing in parallel three sets of related questions: 1) How many types of ganglion cells are there in a typical mammalian retina and what are their structural and functional characteristics? 2) What combination of synaptic networks and intrinsic membrane properties are responsible for the characteristic light responses of individual types? 3) What do the functional specializations of individual classes contribute to perceptual function or to visually mediated behavior? To pursue these questions, we label retinal ganglion cells by retrograde transport from the brain; analyze in vitro their light responses, intrinsic membrane properties and synaptic pharmacology using the whole-cell patch clamp method; and reveal their morphology with intracellular dyes. Recently, we have discovered a novel ganglion cell in rat retina that is intrinsically photosensitive. These ganglion cells exhibit robust light responses even when all influences from classical photoreceptors (rods and cones) are blocked, either by applying pharmacological agents or by dissociating the ganglion cell from the retina. These photosensitive ganglion cells seem likely to serve as photoreceptors for the photic synchronization of circadian rhythms, the mechanism that allows us to overcome jet lag. They project to the circadian pacemaker of the brain, the suprachiasmatic nucleus of the hypothalamus. Their temporal kinetics, threshold, dynamic range, and spectral tuning all match known properties of the synchronization or "entrainment" mechanism. These photosensitive ganglion cells innervate various other brain targets, such as the midbrain pupillary control center, and apparently contribute to a host of behavioral responses to ambient lighting conditions. These findings help to explain why circadian and pupillary light responses persist in mammals, including humans, with profound disruption of rod and cone function. Ongoing experiments are designed to elucidate the phototransduction mechanism, including the identity of the photopigment and the nature of downstream signaling pathways. In other studies, we seek to provide a more detailed characterization of the photic responsiveness and both morphological and functional evidence concerning possible interactions with conventional rod- and cone-driven retinal circuits. These studies are of potential value in understanding and designing appropriate therapies for jet lag, the negative consequences of shift work, and seasonal affective disorder.
Neurocognitive mechanisms of proactive temporal attention: challenging oscillatory and cortico-centered models
To survive in a rapidly dynamic world, the brain predicts the future state of the world and proactively adjusts perception, attention and action. A key to efficient interaction is to predict and prepare to not only “where” and “what” things will happen, but also to “when”. I will present studies in healthy and neurological populations that investigated the cognitive architecture and neural basis of temporal anticipation. First, influential ‘entrainment’ models suggest that anticipation in rhythmic contexts, e.g. music or biological motion, uniquely relies on alignment of attentional oscillations to external rhythms. Using computational modeling and EEG, I will show that cortical neural patterns previously associated with entrainment in fact overlap with interval timing mechanisms that are used in aperiodic contexts. Second, temporal prediction and attention have commonly been associated with cortical circuits. Studying neurological populations with subcortical degeneration, I will present data that point to a double dissociation between rhythm- and interval-based prediction in the cerebellum and basal ganglia, respectively, and will demonstrate a role for the cerebellum in attentional control of perceptual sensitivity in time. Finally, using EEG in neurodegenerative patients, I will demonstrate that the cerebellum controls temporal adjustment of cortico-striatal neural dynamics, and use computational modeling to identify cerebellar-controlled neural parameters. Altogether, these findings reveal functionally and neural context-specificity and subcortical contributions to temporal anticipation, revising our understanding of dynamic cognition.
NMC4 Short Talk: A mechanism for inter-areal coherence through communication based on connectivity and oscillatory power
Inter-areal coherence between cortical field-potentials is a widespread phenomenon and depends on numerous behavioral and cognitive factors. It has been hypothesized that inter-areal coherence reflects phase-synchronization between local oscillations and flexibly gates communication. We reveal an alternative mechanism, where coherence results from and is not the cause of communication, and naturally emerges as a consequence of the fact that spiking activity in a sending area causes post-synaptic inputs both in the same area and in other areas. Consequently, coherence depends in a lawful manner on oscillatory power and phase-locking in a sending area and inter-areal connectivity. We show that changes in oscillatory power explain prominent changes in fronto-parietal beta-coherence with movement and memory, and LGN-V1 gamma-coherence with arousal and visual stimulation. Optogenetic silencing of a receiving area and E/I network simulations demonstrate that afferent synaptic inputs rather than spiking entrainment are the main determinant of inter-areal coherence. These findings suggest that the unique spectral profiles of different brain areas automatically give rise to large-scale inter-areal coherence patterns that follow anatomical connectivity and continuously reconfigure as a function of behavior and cognition.
Microalgal motility through day/night cycles
We have characterised the motility of the swimming microalga Chlamydomonas reinhardtii as a function of day/night cycles, to which the microalgal growth is entrained. Intriguingly, we find that the microalgae swim almost twice as fast during the night than during the day. I will connect this result with the bioenergetics of flagellar propulsion, discussing consequences for the distributions of cells in lab-based and environmental water columns.
Tapping the beat of four subdivisions: Neural entrainment, musical training and the binary advantage
The subdivision benefit refers to the positive effect of subdividing a beat on sensorimotor synchronization. We recorded electroencephalograms of musicians and non-musicians to study how they listened or finger-tapped to a beat, subdivided into four distinct subdivisions. Musicians showed more consistent tapping responses than non-musicians, and enhanced neural entrainment during the tapping task than in the listening task. In both groups, there was a neural enhancement of the beat frequency and its first harmonic (related to duplets) after listening to the four subdivisions. Furthermore, non-musicians tapped more consistently to the beat of duplets than other subdivisions. Altogether, this suggests a neural and behavioral advantage for binary subdivisions, that can be modulated with formal training in music.
Mixed active-passive suspensions: from particle entrainment to spontaneous demixing
Understanding the properties of active matter is a challenge which is currently driving a rapid growth in soft- and bio-physics. Some of the most important examples of active matter are at the microscale, and include active colloids and suspensions of microorganisms, both as a simple active fluid (single species) and as mixed suspensions of active and passive elements. In this last class of systems, recent experimental and theoretical work has started to provide a window into new phenomena including activity-induced depletion interactions, phase separation, and the possibility to extract net work from active suspensions. Here I will present our work on a paradigmatic example of mixed active-passive system, where the activity is provided by swimming microalgae. Macro- and micro-scopic experiments reveal that microorganism-colloid interactions are dominated by rare close encounters leading to large displacements through direct entrainment. Simulations and theoretical modelling show that the ensuing particle dynamics can be understood in terms of a simple jump-diffusion process, combining standard diffusion with Poisson-distributed jumps. Entrainment length can be understood within the framework of Taylor dispersion as a competition between advection by the no-slip surface of the cell body and microparticle diffusion. Building on these results, we then ask how external control of the dynamics of the active component (e.g. induced microswimmer anisotropy/inhomogeneity) can be used to alter the transport of passive cargo. As a first step in this direction, we study the behaviour of mixed active-passive systems in confinement. The resulting spatial inhomogeneity in swimmers’ distribution and orientation has a dramatic effect on the spatial distribution of passive particles, with the colloids accumulating either towards the boundaries or towards the bulk of the sample depending on the size of the container. We show that this can be used to induce the system to de-mix spontaneously.
Respiratory entrainment to auditory hierarchy
FENS Forum 2024
40 Hz visual and auditory entrainment increases EEG alpha activity and improves cognitive functions of middle-aged healthy controls
FENS Forum 2024