Environmental Information
environmental information
Heading perception in crowded environments
Self-motion through a visual world creates a pattern of expanding visual motion called optic flow. Heading estimation from the optic flow is accurate in rigid environments. But it becomes challenging when other humans introduce an independent motion to the scene. The biological motion of human walkers consists of translation through space and associated limb articulation. The characteristic motion pattern is regular, though complex. A world full of humans moving around is nonrigid, causing heading errors. But limb articulation alone does not perturb the global structure of the flow field, matching the rigidity assumption. For heading perception from optic flow analysis, limb articulation alone should not impair heading estimates. But we observed heading biases when participants encountered a group of point-light walkers. Our research investigates the interactions between optic flow perception and biological motion perception. We further analyze the impact of environmental information.
Why do some animals have more than two eyes?
The evolution of vision revolutionised animal biology, and eyes have evolved in a stunning array of diverse forms over the past half a billion years. Among these are curious duplicated visual systems, where eyes can be spread across the body and specialised for different tasks. Although it sounds radical, duplicated vision is found in most major groups across the animal kingdom, but remains poorly understood. We will explore how and why animals collect information about their environment in this unusual way, looking at examples from tropical forests to the sea floor, and from ancient arthropods to living jellyfish. Have we been short-changed with just two eyes? Dr Lauren Sumner-Rooney is a Research Fellow at the OUMNH studying the function and evolution of animal visual systems. Lauren completed her undergraduate degree at Oxford in 2012, and her PhD at Queen’s University Belfast in 2015. She worked as a research technician and science communicator at the Royal Veterinary College (2015-2016) and held a postdoctoral research fellowship at the Museum für Naturkunde, Berlin (2016-2017) before arriving at the Museum in 2017.
Integration of „environmental“ information in the neuronal epigenome
The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.