← Back

Environmental

Topic spotlight
TopicWorld Wide

environmental perturbations

Discover seminars, jobs, and research tagged with environmental perturbations across World Wide.
6 curated items6 Seminars
Updated about 1 year ago
6 items · environmental perturbations
6 results
SeminarNeuroscience

Understanding the complex behaviors of the ‘simple’ cerebellar circuit

Megan Carey
The Champalimaud Center for the Unknown, Lisbon, Portugal
Nov 13, 2024

Every movement we make requires us to precisely coordinate muscle activity across our body in space and time. In this talk I will describe our efforts to understand how the brain generates flexible, coordinated movement. We have taken a behavior-centric approach to this problem, starting with the development of quantitative frameworks for mouse locomotion (LocoMouse; Machado et al., eLife 2015, 2020) and locomotor learning, in which mice adapt their locomotor symmetry in response to environmental perturbations (Darmohray et al., Neuron 2019). Combined with genetic circuit dissection, these studies reveal specific, cerebellum-dependent features of these complex, whole-body behaviors. This provides a key entry point for understanding how neural computations within the highly stereotyped cerebellar circuit support the precise coordination of muscle activity in space and time. Finally, I will present recent unpublished data that provide surprising insights into how cerebellar circuits flexibly coordinate whole-body movements in dynamic environments.

SeminarNeuroscienceRecording

Autopoiesis and Enaction in the Game of Life

Randall Beer
Indiana University
Mar 16, 2023

Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.

SeminarNeuroscienceRecording

Differential Resilience of Neurons and Networks with Similar Behavior to Perturbation. (Simultaneous translation to Spanish)

Eve Marder, Ph.D.
Victor and Gwendolyn Beinfield Professor of Neuroscience, Biology Dept and Volen Center, Brandeis University, Waltham, MA, USA
Sep 27, 2020

Both computational and experimental results in single neurons and small networks demonstrate that very similar network function can result from quite disparate sets of neuronal and network parameters. Using the crustacean stomatogastric nervous system, we study the influence of these differences in underlying structure on differential resilience of individuals to a variety of environmental perturbations, including changes in temperature, pH, potassium concentration and neuromodulation. We show that neurons with many different kinds of ion channels can smoothly move through different mechanisms in generating their activity patterns, thus extending their dynamic range. The talk will be simultaneously translated to spanish by the interpreter Liliana Viera, MSc. Los resultados tanto computacionales como experimentales en neuronas individuales y redes pequeñas demuestran que funcionamientos de redes muy similares pueden pueden resultar de conjuntos bastante dispares de parámetros neuronales y de las redes. Utilizando el sistema nervioso estomatogástrico de los crustáceos, estudiamos la influencia de estas diferencias en la estructura subyacente en la resistencia diferencial de los individuos a una variedad de perturbaciones ambientales, incluidos los cambios de temperatura, pH, concentración de potasio y neuromodulación. Mostramos que neuronas con muchos tipos diferentes de canales iónicos pueden moverse suavemente a través de diferentes mecanismos para generar sus patrones de actividad, extendiendo así su rango dinámico. La conferencia será traducida simultáneamente al español por la intérprete Liliana Viera MSc.