Epigenetics
epigenetics
Sofia Lizarraga, Assistant Professor
We are studying the role of histone modifiers in human neuronal development using stem cell based models. The research assistant will conduct experiments with various human-induced pluripotent stem cell lines using cellular and molecular approaches. In addition, this person will be responsible for ordering supplies, keeping the laboratory organized, helping manage hazardous waste, maintaining the chemical inventory, and routine equipment maintenance. This person will also be expected to contribute to the intellectual environment in the laboratory by participating in the laboratory group meetings and helping train undergraduates.
Dr. Gabriele Scheler
We are offering a research stipend to investigate theories of memorization in neural plasticity. The focus is a critical evaluation of the role of LTP/LTD and synaptic plasticity in memory. This position is virtual and could be done part-time, or full-time for three months. The ideal candidate should have solid knowledge of neurobiology, especially plasticity mechanisms, excellent communication skills, interest and enthusiasm for next-generation neural theories, a good understanding of computation and mathematics. Programming skills are not required for this position. Detailed knowledge of one area of neural plasticity, such as synapses, intracellular pathways or genetics, is expected. Further information available on request.
Nathan Skene
This project will involve the use single cell epigenetics to address key questions about the mechanisms of neurodegenerative disease. In a series of recent publications in Nature Genetics, the lab has demonstrated that single cell RNA-seq data from mice can be used to identify the cell types associated with genetic risk factors for neurodegenerative disease. To perform this mapping, we use GWAS summary statistics generated by our collaborators at a variety of international consortia and personal genomics companies. Identification of cell types genetically implicated in disease, enables better drug targeting efforts as it is free from the confounds associated with neuropathology and mouse modelling. Critical questions remain open about the etiologically relevant cell types and the regulatory effects of disease loci within those cells. We are looking to establish the use of single cell epigenetic techniques, such as ATAC-seq and CUT&TAG, as this will enhance our ability to map intergenic loci to cell type specific features. This project will involve working with human tissue brain banks, to apply these methods to targeted populations of cells. If you are interested in this position, then please email Dr Nathan Skene directly to discuss
Dr Nathan Skene
Using machine learning to predict cell-type specific effects of genetic variants which influence genome regulation. This PhD project is focused on using machine learning techniques to develop novel classifiers for predicting how changes in DNA sequences alter genomic regulatory features. Many regulatory proteins recognise particular DNA sequences known as motifs, for instance, EcoRI only binds to GAATTC. DNA sequences can be converted into a machine interpretable format, using one-hot encoding. The candidate will use publicly available and inhouse datasets of genomic regulatory features to train models. Machine learning techniques will be used to predict the cell-type specific regulatory effects of genetic variants. We will provide several true-positive datasets, wherein the effect of genetic mutations on particular regulatory features has been measured. These will form validation datasets to evaluate how well the trained classifier works. We are interested in how improvements in the machine learning approach (e.g. use of transfer learning, recurrent attentional networks or graph convolution networks) can be used to improve upon existing methods. The candidate will use these techniques to identify causal pathways and candidate drug targets for neurodegenerative diseases.
Genetic and epigenetic underpinnings of neurodegenerative disorders
Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.
Epigenetic rewiring in Schinzel-Giedion syndrome
During life, a variety of specialized cells arise to grant the right and timely corrected functions of tissues and organs. Regulation of chromatin in defining specialized genomic regions (e.g. enhancers) plays a key role in developmental transitions from progenitors into cell lineages. These enhancers, properly topologically positioned in 3D space, ultimately guide the transcriptional programs. It is becoming clear that several pathologies converge in differential enhancer usage with respect to physiological situations. However, why some regulatory regions are physiologically preferred, while some others can emerge in certain conditions, including other fate decisions or diseases, remains obscure. Schinzel-Giedion syndrome (SGS) is a rare disease with symptoms such as severe developmental delay, congenital malformations, progressive brain atrophy, intractable seizures, and infantile death. SGS is caused by mutations in the SETBP1 gene that results in its accumulation further leading to the downstream accumulation of SET. The oncoprotein SET has been found as part of the histone chaperone complex INHAT that blocks the activity of histone acetyltransferases suggesting that SGS may (i) represent a natural model of alternative chromatin regulation and (ii) offer chances to study downstream (mal)adaptive mechanisms. I will present our work on the characterization of SGS in appropriate experimental models including iPSC-derived cultures and mouse.
Establishment and aging of the neuronal DNA methylation landscape in the hippocampus
The hippocampus is a brain region with key roles in memory formation, cognitive flexibility and emotional control. Yet hippocampal function is impaired severely during aging and in neurodegenerative diseases, and impairments in hippocampal function underlie age-related cognitive decline. Accumulating evidence suggests that the deterioration of the neuron-specific epigenetic landscape during aging contributes to their progressive, age-related dysfunction. For instance, we have recently shown that aging is associated with pronounced alterations of neuronal DNA methylation patterns in the hippocampus. Because neurons are generated mostly during development with limited replacement in the adult brain, they are particularly long-lived cells and have to maintain their cell-type specific gene expression programs life-long in order to preserve brain function. Understanding the epigenetic mechanisms that underlie the establishment and long-term maintenance of neuron-specific gene expression programs, will help us to comprehend the sources and consequences of their age-related deterioration. In this talk, I will present our recent work that investigated the role of DNA methylation in the establishment of neuronal gene expression programs and neuronal function, using adult neurogenesis in the hippocampus as a model. I will then describe the effects of aging on the DNA methylation landscape in the hippocampus and discuss the malleability of the aging neuronal methylome to lifestyle and environmental stimulation.
Neural epigenetic mechanisms of early life exercise interventions
An epigenetic perspective on stem cell specification in the developing CNS
At the nexus of genes, aging and environment: Understanding transcriptomic and epigenomic regulation in Parkinson's disease
Parkinson’s Disease (PD), the most common neurodegenerative movement disorder, is based on a complex interplay between genetic predispositions, aging processes, and environmental influences. In order to better understand the gene-environment axis in PD, we pursue a multi-omics approach to comprehensively interrogate genome-wide changes in histone modifications, DNA methylation, and hydroxymethylation, accompanied by transcriptomic profiling in cell and animal models of PD as well as large patient cohorts. Furthermore, we assess the plasticity of epigenomic modifications under influence of environmental factors using longitudinal cohorts of sporadic PD cases as well as mouse models exposed to specific environmental factors. Here, we present gene expression changes in PD mouse models in context of aging as well as environmental enrichment and high-fat diet.
Don't forget the gametes: Neurodevelopmental pathogenesis starts in the sperm and egg
Proper development of the nervous system depends not only on the inherited DNA sequence, but also on proper regulation of gene expression, as controlled in part by epigenetic mechanisms present in the parental gametes. In this presentation an internationally recognized research advocate explains why researchers concerned about the origins of increasingly prevalent neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder should look beyond genetics in probing the origins of dysregulated transcription of brain-related genes. The culprit for a subset of cases, she contends, may lie in the exposure history of the parents, and thus their germ cells. To illustrate how environmentally informed, nongenetic dysfunction may occur, she focuses on the example of parents' histories of exposure to common agents of modern inhalational anesthesia, a highly toxic exposure that in mammalian models has been seen to induce heritable neurodevelopmental abnormality in offspring born of exposed germline.
Cell-type specific genomics and transcriptomics of HIV in the brain
Exploration of genome organization and function in the HIV infected brain is critical to aid in the understanding and development of treatments for HIV-associated neurocognitive disorder (HAND). Here, we applied a multiomic approach, including single nuclei transcriptomics, cell-type specific Hi-C 3D genome mapping, and viral integration site sequencing (IS-seq) to frontal lobe tissue from HIV-infected individuals with encephalitis (HIVE) and without encephalitis (HIV+). We observed reorganization of open/repressive (A/B) compartment structures in HIVE microglia encompassing 6.4% of the genome with enrichment for regions containing interferon (IFN) pathway genes. 3D genome remodeling was associated with transcriptomic reprogramming, including down-regulation of cell adhesion and synapse-related functions and robust activation of IFN signaling and cell migratory pathways, and was recapitulated by IFN-g stimulation of cultured microglial cells. Microglia from HIV+ brains showed, to a lesser extent, similar transcriptional alterations. IS-seq recovered 1,221 integration sites in the brain that were enriched for chromosomal domains newly mobilized into a permissive chromatin environment in HIVE microglia. Viral transcription, which was detected in 0.003% of all nuclei in HIVE brain, occurred in a subset of highly activated microglia that drove differential expression in HIVE. Thus, we observed a dynamic interrelationship of interferon-associated 3D genome and transcriptome remodeling with HIV integration and transcription in the brain.
Cell type-specific gene regulatory mechanisms associated with addiction-related behaviors in rats
Understanding the fundamental gene regulatory mechanisms underlying addiction and related behaviors could facilitate more effective treatments. We discuss our work using multi-omics methods to provide mechanistic and functional insights into how addiction perturbs gene regulatory programs in the rat brain, with single-cell resolution.
Reversing chronic stress effects through life-style interventions
One by one: brain organoid modelling of neurodevelopmental disorders at single cell resolution
Dissecting the 3D regulatory landscape of the developing cerebral cortex with single-cell epigenomics
Understanding how different epigenetic layers are coordinated to facilitate robust lineage decisions during development is one of the fundamental questions in regulatory genomics. Using single-cell epigenomics coupled with cell-type specific high-throughput mapping of enhancer activity, DNA methylation and the 3D genome landscape in vivo, we dissected how the epigenome is rewired during cortical development. We identified and functionally validated key transcription factors such as Neurog2 which underlie regulatory dynamics and coordinate rewiring across multiple epigenetic layers to ensure robust lineage specification. This work showcases the power of high-throughput integrative genomics to dissect the molecular rules of cell fate decisions in the brain and more broadly, how to apply them to evolution and disease.
Acting on our instincts: understanding emotional decision-making
The role of histone methyltransferase SETDB1 on regulating mood behaviors
Neuronal RNA signatures: Regulation and Function
Neurons are uniquely complex cells characterized by the expression of RNA sequences that are found in no other cell type: neuron-specific mRNA splice isoforms, circular RNAs, microRNAs, and ultra-long 3’UTRs. Although relatively little is known about how these neuronal RNA signatures control neuronal development and function, the importance of RNA-directed regulation in the brain is exemplified by its implication in neurological diseases. Our goal is to gain mechanistic and functional insight of the neuron-specific RNA landscape that drives neural function in health and disease.
Epigenetic regulation of neural progenitor cells in the developing neocortex
Untitled Seminar
Epigenetic regulation of alternative splicing in the context of cocaine reward
Neuronal alternative splicing is a key gene regulatory mechanism in the brain. However, the spliceosome machinery is insufficient to fully specify splicing complexity. In considering the role of the epigenome in activity-dependent alternative splicing, we and others find the histone modification H3K36me3 to be a putative splicing regulator. In this study, we found that mouse cocaine self-administration caused widespread differential alternative splicing, concomitant with the enrichment of H3K36me3 at differentially spliced junctions. Importantly, only targeted epigenetic editing can distinguish between a direct role of H3K36me3 in splicing and an indirect role via regulation of splice factor expression elsewhere on the genome. We targeted Srsf11, which was both alternatively spliced and H3K36me3 enriched in the brain following cocaine self-administration. Epigenetic editing of H3K36me3 at Srsf11 was sufficient to drive its alternative splicing and enhanced cocaine self-administration, establishing the direct causal relevance of H3K36me3 to alternative splicing of Srsf11 and to reward behavior.
Epigenetic regulation of brain and behavior by the estrous cycle
Integration of „environmental“ information in the neuronal epigenome
The inhibitory actions of the heterogeneous collection of GABAergic interneurons tremendously influence cortical information processing, which is reflected by diseases like autism, epilepsy and schizophrenia that involve defects in cortical inhibition. Apart from the regulation of physiological processes like synaptic transmission, proper interneuron function also relies on their correct development. Hence, decrypting regulatory networks that direct proper cortical interneuron development as well as adult functionality is of great interest, as this helps to identify critical events implicated in the etiology of the aforementioned diseases. Thereby, extrinsic factors modulate these processes and act on cell- and stage-specific transcriptional programs. Herein, epigenetic mechanisms of gene regulation, like DNA methylation executed by DNA methyltransferases (DNMTs), histone modifications and non-coding RNAs, call increasing attention in integrating “environmental information” in our genome and sculpting physiological processes in the brain relevant for human mental health. Several studies associate altered expression levels and function of the DNA methyltransferase 1 (DNMT1) in subsets of embryonic and adult cortical interneurons in patients diagnosed with schizophrenia. Although accumulating evidence supports the relevance of epigenetic signatures for instructing cell type-specific development, only very little is known about their functional implications in discrete developmental processes and in subtype-specific maturation of cortical interneurons. Similarly, little is known about the role of DNMT1 in regulating adult interneurons functionality. This talk will provide an overview about newly identified and roles DNMT1 has in orchestrating cortical interneuron development and adult function. Further, this talk will report about the implications of lncRNAs in mediating site-specific DNA methylation in response to discrete external stimuli.
Making memories in mice
Understanding how the brain uses information is a fundamental goal of neuroscience. Several human disorders (ranging from autism spectrum disorder to PTSD to Alzheimer’s disease) may stem from disrupted information processing. Therefore, this basic knowledge is not only critical for understanding normal brain function, but also vital for the development of new treatment strategies for these disorders. Memory may be defined as the retention over time of internal representations gained through experience, and the capacity to reconstruct these representations at later times. Long-lasting physical brain changes (‘engrams’) are thought to encode these internal representations. The concept of a physical memory trace likely originated in ancient Greece, although it wasn’t until 1904 that Richard Semon first coined the term ‘engram’. Despite its long history, finding a specific engram has been challenging, likely because an engram is encoded at multiple levels (epigenetic, synaptic, cell assembly). My lab is interested in understanding how specific neurons are recruited or allocated to an engram, and how neuronal membership in an engram may change over time or with new experience. Here I will describe both older and new unpublished data in our efforts to understand memories in mice.
Epigenetic regulation of neuronal cell specification
miRNA dysregulation in embryo results in autism spectrum disorder
From epigenetics to stratified therapies in neuropsychiatric diseases
The establishment of effective therapies for neurodegenerative and neuropsychiatric diseases is still challenging and one of the reasons is that especially for age-associated neurodegenerative diseases pathology accumulates long before there are any clinical signs of disease. Thus, patients are often only diagnosed at an already advanced state of molecular pathology, when causative therapies fail. Thus, there is an urgent need for molecular biomarkers that could detect individuals at risk for developing a CNS disease and stratify patients. I will address epigenetic processes such as histone-modifications and non-coding RNAs as potential approaches for patient stratification and therapeutic interaction, with a specific focus on RNA-therapies. Here, I plan to cover examples from our recent research on Alzheimer’s disease and Schizophrenia.
Analysis and manipulation of facilitators and barriers of cell identity reprogramming
Retroviruses and retrotransposons interacting with the 3D genome in mouse and human brain
Repeat-rich sequence blocks are considered major determinants for 3D folding and structural genome organization in the cell nucleus in all higher eukaryotes. Here, we discuss how megabase-scale chromatin domain and chromosomal compartment organization in adult mouse cerebral cortex is linked, in highly cell type-specific fashion, to multiple retrotransposon superfamilies which comprise the vast majority of mobile DNA elements in the murine genome. We show that neuronal megadomain architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, unleashes proviruses from the Long Terminal Repeat (LTR) Endogenous Retrovirus family that exhibit strong tropism in mature neurons. Furthermore, we mapped, in the human brain, cell type-specific genomic integration patterns of the human pathogen and exogenous retrovirus, HIV, together with changes in genome organization and function of the HIV infected brain. Our work highlights the critical importance of chromosomal conformations and the ‘spatial genome’ for neuron- and glia-specific regulatory mechanisms and defenses aimed at exogenous and endogenous retrotransposons in the brain
Brain Awareness Week @ IITGN
A quarter century of the maddening hunt for madness genes: what is to be done
Epigenetics and Dementia: Lessons From the 20-Year Indianapolis-Ibadan Dementia Study
Dementia is of global interest because of the rapid increase in both the number of individuals affected and the population at risk. It is essential that the risk factors be carefully delineated for the formulation of preventive strategies. Epigenetics refers to external modifications that turn genes "on" or "off”, and cross-cultural studies of migrant populations provide information on the interplay of environmental factors on genetic predisposition. The Indianapolis-Ibadan Dementia Study compared the prevalence, incidence and risk factors of dementia in African Americans and Yoruba to tease out the role of epigenetics in dementia. The presentation will provide details on biomarkers of dementia, vascular risk factors and the association with apolipoprotein E in the Yoruba. The purpose will be to inspire early career researchers on possibilities and research strategies applicable in African populations
Stress and the developing brain - molecular mechanisms of risk and resilience
Transcription regulates histone homeostasis
Epigenetic Reprogramming of Taste by Diet
Diets rich in sugar, salt, and fat alter taste perception and food intake, leading to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of D. melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Importantly, half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.