← Back

Epileptic Seizures

Topic spotlight
TopicWorld Wide

epileptic seizures

Discover seminars, jobs, and research tagged with epileptic seizures across World Wide.
9 curated items8 Seminars1 ePoster
Updated over 2 years ago
9 items · epileptic seizures
9 results
SeminarNeuroscienceRecording

Off the rails - how pathological patterns of whole brain activity emerge in epileptic seizures

Richard Rosch
King's College London
Mar 14, 2023

In most brains across the animal kingdom, brain dynamics can enter pathological states that are recognisable as epileptic seizures. Yet usually, brain operate within certain constraints given through neuronal function and synaptic coupling, that will prevent epileptic seizure dynamics from emerging. In this talk, I will bring together different approaches to identifying how networks in the broadest sense shape brain dynamics. Using illustrative examples from intracranial EEG recordings, disorders characterised by molecular disruption of a single neurotransmitter receptor type, to single-cell recordings of whole-brain activity in the larval zebrafish, I will address three key questions - (1) how does the regionally specific composition of synaptic receptors shape ongoing physiological brain activity; (2) how can disruption of this regionally specific balance result in abnormal brain dynamics; and (3) which cellular patterns underly the transition into an epileptic seizure.

SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Feb 15, 2023

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Indispensable for generating epileptic seizures: where, when, how?

Yujiang Wang
Newcastle University
Dec 13, 2022

In epilepsy research, a holy grail has been the identification and understanding of the "epileptogenic zone" - operationally defined as the (minimal) area or region of the brain is indispensible for the generation of epileptic seizures. The identification of the epileptogenic zone is particularly important for surgical treatments of focal epilepsy patients, but I will highlight some recent clinical, experimental and theoretical work showing that it is also fundamentally linked with our understanding of epilepsy and seizures. I will conclude with a proposal for an updated understanding of the epileptogenic zone and ictogenesis.

SeminarNeuroscience

Myelin Formation and Oligodendrocyte Biology in Epilepsy

Angelika Mühlebner
Universitair Medisch Centrum Utrecht
Oct 18, 2022

Epilepsy is one of the most common neurological diseases according to the World Health Organization (WHO) affecting around 70 million people worldwide [WHO]. Patients who suffer from epilepsy also suffer from a variety of neuro-psychiatric co-morbidities, which they can experience as crippling as the seizure condition itself. Adequate organization of cerebral white matter is utterly important for cognitive development. The failure of integration of neurologic function with cognition is reflected in neuro-psychiatric disease, such as autism spectrum disorder (ASD). However, in epilepsy we know little about the importance of white matter abnormalities in epilepsy-associated co-morbidities. Epilepsy surgery is an important therapy strategy in patients where conventional anti-epileptic drug treatment fails . On histology of the resected brain samples, malformations of cortical development (MCD) are common among the epilepsy surgery population, especially focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC). Both pathologies are associated with constitutive activation of the mTOR pathway. Interestingly, some type of FCD is morphological similar to TSC cortical tubers including the abnormalities of the white matter. Hypomyelination with lack of myelin-producing cells, the oligodendrocytes, within the lesional area is a striking phenomenon. Impairment of the complex myelination process can have a major impact on brain function. In the worst case leading to distorted or interrupted neurotransmissions. It is still unclear whether the observed myelin pathology in epilepsy surgical specimens is primarily related to the underlying malformation process or is just a secondary phenomenon of recurrent epileptic seizures creating a toxic micro-environment which hampers myelin formation. Interestingly, mTORC1 has been implicated as key signal for myelination, thus, promoting the maturation of oligodendrocytes . These results, however, remain controversial. Regardless of the underlying pathophysiologic mechanism, alterations of myelin dynamics, depending on their severity, are known to be linked to various kinds of developmental disorders or neuropsychiatric manifestations.

SeminarNeuroscienceRecording

Redox and mitochondrial dysregulation in epilepsy

Manisha Patel
University of Colorado
Sep 20, 2022

Epileptic seizures render the brain uniquely dependent on energy producing pathways. Studies in our laboratory have been focused on the role of redox processes and mitochondria in the context of abnormal neuronal excitability associated with epilepsy. We have shown that that status epilepticus (SE) alters mitochondrial and cellular redox status, energetics and function and conversely, that reactive oxygen species and resultant dysfunction can lead to chronic epilepsy. Oxidative stress and neuroinflammatory pathways have considerable crosstalk and targeting redox processes has recently been shown to control neuroinflammation and excitability. Understanding the role of metabolic and redox processes can enable the development of novel therapeutics to control epilepsy and/or its comorbidities.

SeminarNeuroscience

Chemogenetic therapies for epilepsy: promises and challenges

Robrecht Raedt
Ghent University
Mar 15, 2022

Expression of Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) on excitatory hippocampal neurons in the hippocampus represents a potential new therapeutic strategy for drug-resistant epilepsy. During my talk I will demonstrate that we obtained potent suppression of spontaneous epileptic seizures in mouse and a rat models for temporal lobe epilepsy using different DREADD ligands, up to one year after viral vector expression. The chemogenetic approach clearly outperforms the seizure-suppressing efficacy of currently existing anti-epileptic drugs. Besides the promises, I will also present some of the challenges associated with a potential chemogenetic therapy, including constitutive DREADD activity, tolerance effects, risk for toxicity, paradoxical excitatory effects in non-epileptic hippocampal tissue.

SeminarNeuroscience

Mechanisms and precision therapies in genetic epilepsies

Holger Lerche
Hertie Institute for Clinical Brain Research
Jul 6, 2021

Large scale genetic studies and associated functional investigations have tremendously augmented our knowledge about the mechanisms underlying epileptic seizures, and sometimes also accompanying developmental problems. Pharmacotherapy of the epilepsies is routinely guided by trial and error, since predictors for a response to specific antiepileptic drugs are largely missing. The recent advances in the field of genetic epilepsies now offer an increasing amount of either well fitting established or new re-purposing therapies for genetic epilepsy syndromes based on understanding of the pathophysiological principles. Examples are provided by variants in ion channel or transporter encoding genes which cause a broad spectrum of epilepsy syndromes of variable severity and onset, (1) the ketogenic diet for glucose transporter defects of the blood-brain barrier, (2) Na+ channel blockers (e.g. carbamazepine) for gain-of-function Na+ channel mutations and avoidance of those drugs for loss-of-function mutations, and (3) specific K+ channel blockers for mutations with a gain-of-function defect in respective K+ channels. I will focus in my talk on the latter two including the underlying mechanisms, their relation to clinical phenotypes and possible therapeutic implications. In conclusion, genetic and mechanistic studies offer promising tools to predict therapeutic effects in rare epilepsies.

ePoster

Phase-locked transcranial intersectional short pulse (ISP) stimulation in terminating epileptic seizures

Nóra Kata Forgó, Lívia Barcsai, Márton Görög, Dániel Fabó, Loránd G. Erőss, Orrin Devinsky, Zoltán Chadaide, Antal Berényi

FENS Forum 2024