Topic spotlight
TopicWorld Wide

ERP

Discover seminars, jobs, and research tagged with ERP across World Wide.
101 curated items60 Seminars40 ePosters1 Position
Updated in 2 months
101 items · ERP
101 results
SeminarNeuroscience

Decoding stress vulnerability

Stamatina Tzanoulinou
University of Lausanne, Faculty of Biology and Medicine, Department of Biomedical Sciences
Feb 19, 2026

Although stress can be considered as an ongoing process that helps an organism to cope with present and future challenges, when it is too intense or uncontrollable, it can lead to adverse consequences for physical and mental health. Social stress specifically, is a highly prevalent traumatic experience, present in multiple contexts, such as war, bullying and interpersonal violence, and it has been linked with increased risk for major depression and anxiety disorders. Nevertheless, not all individuals exposed to strong stressful events develop psychopathology, with the mechanisms of resilience and vulnerability being still under investigation. During this talk, I will identify key gaps in our knowledge about stress vulnerability and I will present our recent data from our contextual fear learning protocol based on social defeat stress in mice.

Position

Raffaella Rumiati

International School for Advanced Studies (SISSA)
Trieste and Rome, Italy
Dec 5, 2025

Towards an inclusive enterprise: Development of neuropsychological tools for competence mapping in persons with autism in business contexts. Supervisor SISSA Prof Raffaella Rumiati (rumiati@sissa.it) Co-supervisors Roma Tor Vergata Dr. Maria Rosaria Nappa (maria.rosaria.nappa@uniroma2.it) Dr. Elisa Cavicchiolo (elisa.cavicchiolo@uniroma2.it) Introduction: Most people with an autism spectrum disorder are unemployed or have a low level of employment, often of short duration and underpaid. The literature dedicated to this topic (e.g. Wehman et al., 2017) points out that these people have difficulties in finding a job suited to their skills and keeping it, mainly due to problems associated with their relational functioning and the type of support offered by employment settings. On the other hand, it has been shown that the effectiveness of employment pathways for people with autism is fostered by the presence of individualized plans that take into account the characteristics of these people, including their motivations, preferences and expectations, those of their caregivers and the configuration of the work group. Therefore, as also suggested by the Recommendations published by Autism Europe (2016) and by the Istituto Superiore di Sanità (2023), in order to foster the insertion and inclusion of persons with autism in the world of work, it is necessary, first of all, to develop standardized assessment and monitoring tools that can be referred to all levels of support needs. Objectives: The main objective of the project is to develop and validate tools for the assessment and monitoring of skills useful for the insertion and inclusion of people with autism in the corporate environment. These tools will concern the assessment of task-specific skills (e.g. IT and digital skills) and of executive, transversal and motivational dimensions in persons with autism spectrum disorder. Furthermore, it is planned to record event-related potential (ERP) components that account for differences between persons with autism along the above-mentioned dimensions. Method: The project is based on a multi-informant and multi-method approach. In addition to persons with autism spectrum disorder, caregivers and company contact persons will be involved. A qualitative and quantitative research methodology will be adopted. In particular, interviews and/or focus groups will be conducted with caregivers and company contact persons and psychometric approaches will be used to validate instruments useful for the initial assessment and monitoring of competences. ERPs will be recorded individually and will help to define the cognitive endophenotypes of the persons with autism in the study. Expected results: The results of this project will form the basis for the development of evidence-based best practices oriented towards the creation of inclusive work environments in which the 'autistic brain' can represent an opportunity for the growth and integration of persons with autism with caregivers and company contact persons.

SeminarNeuroscience

Spike train structure of cortical transcriptomic populations in vivo

Kenneth Harris
UCL, UK
Oct 28, 2025

The cortex comprises many neuronal types, which can be distinguished by their transcriptomes: the sets of genes they express. Little is known about the in vivo activity of these cell types, particularly as regards the structure of their spike trains, which might provide clues to cortical circuit function. To address this question, we used Neuropixels electrodes to record layer 5 excitatory populations in mouse V1, then transcriptomically identified the recorded cell types. To do so, we performed a subsequent recording of the same cells using 2-photon (2p) calcium imaging, identifying neurons between the two recording modalities by fingerprinting their responses to a “zebra noise” stimulus and estimating the path of the electrode through the 2p stack with a probabilistic method. We then cut brain slices and performed in situ transcriptomics to localize ~300 genes using coppaFISH3d, a new open source method, and aligned the transcriptomic data to the 2p stack. Analysis of the data is ongoing, and suggests substantial differences in spike time coordination between ET and IT neurons, as well as between transcriptomic subtypes of both these excitatory types.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
Jul 8, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Understanding reward-guided learning using large-scale datasets

Kim Stachenfeld
DeepMind, Columbia U
May 13, 2025

Understanding the neural mechanisms of reward-guided learning is a long-standing goal of computational neuroscience. Recent methodological innovations enable us to collect ever larger neural and behavioral datasets. This presents opportunities to achieve greater understanding of learning in the brain at scale, as well as methodological challenges. In the first part of the talk, I will discuss our recent insights into the mechanisms by which zebra finch songbirds learn to sing. Dopamine has been long thought to guide reward-based trial-and-error learning by encoding reward prediction errors. However, it is unknown whether the learning of natural behaviours, such as developmental vocal learning, occurs through dopamine-based reinforcement. Longitudinal recordings of dopamine and bird songs reveal that dopamine activity is indeed consistent with encoding a reward prediction error during naturalistic learning. In the second part of the talk, I will talk about recent work we are doing at DeepMind to develop tools for automatically discovering interpretable models of behavior directly from animal choice data. Our method, dubbed CogFunSearch, uses LLMs within an evolutionary search process in order to "discover" novel models in the form of Python programs that excel at accurately predicting animal behavior during reward-guided learning. The discovered programs reveal novel patterns of learning and choice behavior that update our understanding of how the brain solves reinforcement learning problems.

SeminarNeuroscience

Relating circuit dynamics to computation: robustness and dimension-specific computation in cortical dynamics

Shaul Druckmann
Stanford department of Neurobiology and department of Psychiatry and Behavioral Sciences
Apr 22, 2025

Neural dynamics represent the hard-to-interpret substrate of circuit computations. Advances in large-scale recordings have highlighted the sheer spatiotemporal complexity of circuit dynamics within and across circuits, portraying in detail the difficulty of interpreting such dynamics and relating it to computation. Indeed, even in extremely simplified experimental conditions, one observes high-dimensional temporal dynamics in the relevant circuits. This complexity can be potentially addressed by the notion that not all changes in population activity have equal meaning, i.e., a small change in the evolution of activity along a particular dimension may have a bigger effect on a given computation than a large change in another. We term such conditions dimension-specific computation. Considering motor preparatory activity in a delayed response task we utilized neural recordings performed simultaneously with optogenetic perturbations to probe circuit dynamics. First, we revealed a remarkable robustness in the detailed evolution of certain dimensions of the population activity, beyond what was thought to be the case experimentally and theoretically. Second, the robust dimension in activity space carries nearly all of the decodable behavioral information whereas other non-robust dimensions contained nearly no decodable information, as if the circuit was setup to make informative dimensions stiff, i.e., resistive to perturbations, leaving uninformative dimensions sloppy, i.e., sensitive to perturbations. Third, we show that this robustness can be achieved by a modular organization of circuitry, whereby modules whose dynamics normally evolve independently can correct each other’s dynamics when an individual module is perturbed, a common design feature in robust systems engineering. Finally, we will recent work extending this framework to understanding the neural dynamics underlying preparation of speech.

SeminarNeuroscience

Neurosurgery & Consciousness: Bridging Science and Philosophy in the Age of AI

Isaakidis Dimitrios
Mediterranean Hospital of Cyprus
Apr 10, 2025

Overview of neurosurgery specialty interplay between neurology, psychiatry and neurosurgery. Discussion on benefits and disadvantages of classifications. Presentation of sub-specialties: trauma, oncology, functional, pediatric, vascular and spine. How does an ordinary day of a neurosurgeon look like; outpatient clinic, emergencies, pre/intra/post operative patient care. An ordinary operation. Myth-busting and practical insights of every day practice. An ordinary operation. Hint for research on clinical problems to be solved. The coming ethical frontiers of neuroprosthetics. In part two we will explore the explanatory gap and its significance. We will review the more than 200 theories of the hard problem of consciousness, from the prevailing to the unconventional. Finally, we are going to reflect on the AI advancements and the claims of LLMs becoming conscious

SeminarPsychology

A Novel Neurophysiological Approach to Assessing Distractibility within the General Population

Shadee Thiam
University of Geneva
Mar 4, 2025

Vulnerability to distraction varies across the general population and significantly affects one’s capacity to stay focused on and successfully complete the task at hand, whether at school, on the road, or at work. In this talk, I will begin by discussing how distractibility is typically assessed in the literature and introduce our innovative ERP approach to measuring it. Since distractibility is a cardinal symptom of ADHD, I will introduce its most widely used paper-and-pencil screening tool for the general population as external validation. Following that, I will present the Load Theory of Attention and explain how we used perceptual load to test the reliability of our neural marker of distractibility. Finally, I will highlight potential future applications of this marker in clinical and educational settings.

SeminarNeuroscience

Enhancing Real-World Event Memory

Morgan Barense
University of Toronto
Jan 21, 2025

Memory is essential for shaping how we interpret the world, plan for the future, and understand ourselves, yet effective cognitive interventions for real-world episodic memory loss remain scarce. This talk introduces HippoCamera, a smartphone-based intervention inspired by how the brain supports memory, designed to enhance real-world episodic recollection by replaying high-fidelity autobiographical cues. It will showcase how our approach improves memory, mood, and hippocampal activity while uncovering links between memory distinctiveness, well-being, and the perception of time.

SeminarNeuroscience

Genetic and epigenetic underpinnings of neurodegenerative disorders

Rudolf Jaenisch
MIT Department of Biology
Dec 10, 2024

Pluripotent cells, including embryonic stem (ES) and induced pluripotent stem (iPS) cells, are used to investigate the genetic and epigenetic underpinnings of human diseases such as Parkinson’s, Alzheimer’s, autism, and cancer. Mechanisms of somatic cell reprogramming to an embryonic pluripotent state are explored, utilizing patient-specific pluripotent cells to model and analyze neurodegenerative diseases.

SeminarNeuroscience

LLMs and Human Language Processing

Maryia Toneva, Ariel Goldstein, Jean-Remi King
Max Planck Institute of Software Systems; Hebrew University; École Normale Supérieure
Nov 28, 2024

This webinar convened researchers at the intersection of Artificial Intelligence and Neuroscience to investigate how large language models (LLMs) can serve as valuable “model organisms” for understanding human language processing. Presenters showcased evidence that brain recordings (fMRI, MEG, ECoG) acquired while participants read or listened to unconstrained speech can be predicted by representations extracted from state-of-the-art text- and speech-based LLMs. In particular, text-based LLMs tend to align better with higher-level language regions, capturing more semantic aspects, while speech-based LLMs excel at explaining early auditory cortical responses. However, purely low-level features can drive part of these alignments, complicating interpretations. New methods, including perturbation analyses, highlight which linguistic variables matter for each cortical area and time scale. Further, “brain tuning” of LLMs—fine-tuning on measured neural signals—can improve semantic representations and downstream language tasks. Despite open questions about interpretability and exact neural mechanisms, these results demonstrate that LLMs provide a promising framework for probing the computations underlying human language comprehension and production at multiple spatiotemporal scales.

SeminarNeuroscience

Unmotivated bias

William Cunningham
University of Toronto
Nov 11, 2024

In this talk, I will explore how social affective biases arise even in the absence of motivational factors as an emergent outcome of the basic structure of social learning. In several studies, we found that initial negative interactions with some members of a group can cause subsequent avoidance of the entire group, and that this avoidance perpetuates stereotypes. Additional cognitive modeling discovered that approach and avoidance behavior based on biased beliefs not only influences the evaluative (positive or negative) impressions of group members, but also shapes the depth of the cognitive representations available to learn about individuals. In other words, people have richer cognitive representations of members of groups that are not avoided, akin to individualized vs group level categories. I will end presenting a series of multi-agent reinforcement learning simulations that demonstrate the emergence of these social-structural feedback loops in the development and maintenance of affective biases.

SeminarNeuroscience

Decomposing motivation into value and salience

Philippe Tobler
University of Zurich
Oct 31, 2024

Humans and other animals approach reward and avoid punishment and pay attention to cues predicting these events. Such motivated behavior thus appears to be guided by value, which directs behavior towards or away from positively or negatively valenced outcomes. Moreover, it is facilitated by (top-down) salience, which enhances attention to behaviorally relevant learned cues predicting the occurrence of valenced outcomes. Using human neuroimaging, we recently separated value (ventral striatum, posterior ventromedial prefrontal cortex) from salience (anterior ventromedial cortex, occipital cortex) in the domain of liquid reward and punishment. Moreover, we investigated potential drivers of learned salience: the probability and uncertainty with which valenced and non-valenced outcomes occur. We find that the brain dissociates valenced from non-valenced probability and uncertainty, which indicates that reinforcement matters for the brain, in addition to information provided by probability and uncertainty alone, regardless of valence. Finally, we assessed learning signals (unsigned prediction errors) that may underpin the acquisition of salience. Particularly the insula appears to be central for this function, encoding a subjective salience prediction error, similarly at the time of positively and negatively valenced outcomes. However, it appears to employ domain-specific time constants, leading to stronger salience signals in the aversive than the appetitive domain at the time of cues. These findings explain why previous research associated the insula with both valence-independent salience processing and with preferential encoding of the aversive domain. More generally, the distinction of value and salience appears to provide a useful framework for capturing the neural basis of motivated behavior.

SeminarNeuroscience

Probing neural population dynamics with recurrent neural networks

Chethan Pandarinath
Emory University and Georgia Tech
Jun 11, 2024

Large-scale recordings of neural activity are providing new opportunities to study network-level dynamics with unprecedented detail. However, the sheer volume of data and its dynamical complexity are major barriers to uncovering and interpreting these dynamics. I will present latent factor analysis via dynamical systems, a sequential autoencoding approach that enables inference of dynamics from neuronal population spiking activity on single trials and millisecond timescales. I will also discuss recent adaptations of the method to uncover dynamics from neural activity recorded via 2P Calcium imaging. Finally, time permitting, I will mention recent efforts to improve the interpretability of deep-learning based dynamical systems models.

SeminarNeuroscienceRecording

Characterizing the causal role of large-scale network interactions in supporting complex cognition

Michal Ramot
Weizmann Inst. of Science
May 6, 2024

Neuroimaging has greatly extended our capacity to study the workings of the human brain. Despite the wealth of knowledge this tool has generated however, there are still critical gaps in our understanding. While tremendous progress has been made in mapping areas of the brain that are specialized for particular stimuli, or cognitive processes, we still know very little about how large-scale interactions between different cortical networks facilitate the integration of information and the execution of complex tasks. Yet even the simplest behavioral tasks are complex, requiring integration over multiple cognitive domains. Our knowledge falls short not only in understanding how this integration takes place, but also in what drives the profound variation in behavior that can be observed on almost every task, even within the typically developing (TD) population. The search for the neural underpinnings of individual differences is important not only philosophically, but also in the service of precision medicine. We approach these questions using a three-pronged approach. First, we create a battery of behavioral tasks from which we can calculate objective measures for different aspects of the behaviors of interest, with sufficient variance across the TD population. Second, using these individual differences in behavior, we identify the neural variance which explains the behavioral variance at the network level. Finally, using covert neurofeedback, we perturb the networks hypothesized to correspond to each of these components, thus directly testing their casual contribution. I will discuss our overall approach, as well as a few of the new directions we are currently pursuing.

SeminarPsychology

Enabling witnesses to actively explore faces and reinstate study-test pose during a lineup increases discrimination accuracy

Heather Flowe
University of Birmingham
Apr 21, 2024

In 2014, the US National Research Council called for the development of new lineup technologies to increase eyewitness identification accuracy (National Research Council, 2014). In a police lineup, a suspect is presented alongside multiple individuals known to be innocent who resemble the suspect in physical appearance know as fillers. A correct identification decision by an eyewitness can lead to a guilty suspect being convicted or an innocent suspect being exonerated from suspicion. An incorrect decision can result in the perpetrator remaining at large, or even a wrongful conviction of a mistakenly identified person. Incorrect decisions carry considerable human and financial costs, so it is essential to develop and enact lineup procedures that maximise discrimination accuracy, or the witness’ ability to distinguish guilty from innocent suspects. This talk focuses on new technology and innovation in the field of eyewitness identification. We will focus on the interactive lineup, which is a procedure that we developed based on research and theory from the basic science literature on face perception and recognition. The interactive lineup enables witnesses to actively explore and dynamically view the lineup members. The procedure has been shown to maximize discrimination accuracy, which is the witness’ ability to discriminate guilty from innocent suspects. The talk will conclude by reflecting on emerging technological frontiers and research opportunities.

SeminarNeuroscienceRecording

Executive functions in the brain of deaf individuals – sensory and language effects

Velia Cardin
UCL
Mar 20, 2024

Executive functions are cognitive processes that allow us to plan, monitor and execute our goals. Using fMRI, we investigated how early deafness influences crossmodal plasticity and the organisation of executive functions in the adult human brain. Results from a range of visual executive function tasks (working memory, task switching, planning, inhibition) show that deaf individuals specifically recruit superior temporal “auditory” regions during task switching. Neural activity in auditory regions predicts behavioural performance during task switching in deaf individuals, highlighting the functional relevance of the observed cortical reorganisation. Furthermore, language grammatical skills were correlated with the level of activation and functional connectivity of fronto-parietal networks. Together, these findings show the interplay between sensory and language experience in the organisation of executive processing in the brain.

SeminarNeuroscience

The quest for brain identification

Enrico Amico
Aston University
Mar 20, 2024

In the 17th century, physician Marcello Malpighi observed the existence of distinctive patterns of ridges and sweat glands on fingertips. This was a major breakthrough, and originated a long and continuing quest for ways to uniquely identify individuals based on fingerprints, a technique massively used until today. It is only in the past few years that technologies and methodologies have achieved high-quality measures of an individual’s brain to the extent that personality traits and behavior can be characterized. The concept of “fingerprints of the brain” is very novel and has been boosted thanks to a seminal publication by Finn et al. in 2015. They were among the firsts to show that an individual’s functional brain connectivity profile is both unique and reliable, similarly to a fingerprint, and that it is possible to identify an individual among a large group of subjects solely on the basis of her or his connectivity profile. Yet, the discovery of brain fingerprints opened up a plethora of new questions. In particular, what exactly is the information encoded in brain connectivity patterns that ultimately leads to correctly differentiating someone’s connectome from anybody else’s? In other words, what makes our brains unique? In this talk I am going to partially address these open questions while keeping a personal viewpoint on the subject. I will outline the main findings, discuss potential issues, and propose future directions in the quest for identifiability of human brain networks.

SeminarPsychology

Ganzflicker: Using light-induced hallucinations to predict risk factors of psychosis

Reshanne Reeder
University of Liverpool
Mar 17, 2024

Rhythmic flashing light, or “Ganzflicker”, can elicit altered states of consciousness and hallucinations, bringing your mind’s eye out into the real world. What do you experience if you have a super mind’s eye, or none at all? In this talk, I will discuss how Ganzflicker has been used to simulate psychedelic experiences, how it can help us predict symptoms of psychosis, and even tap into the neural basis of hallucinations.

SeminarPsychology

Impact of personality profiles on emotion regulation efficiency: insights on experience, expressivity and physiological arousal

Elena Trentini
University of Lausanne
Mar 10, 2024

People are confronted every day with internal or external stimuli that can elicit emotions. In order to avoid negative ones, or to pursue individual aims, emotions are often regulated. The available emotion regulation strategies have been previously described as efficient or inefficient, but many studies highlighted that the strategies’ efficiency may be influenced by some different aspects such as personality. In this project, the efficiency of several strategies (e.g., reappraisal, suppression, distraction, …) has been studied according to personality profiles, by using the Big Five personality model and the Maladaptive Personality Trait Model. Moreover, the strategies’ efficiency has been tested according to the main emotional responses, namely experience, expressivity and physiological arousal. Results mainly highlighted the differential impact of strategies on individuals and a slight impact of personality. An important factor seems however to be the emotion parameter we are considering, potentially revealing a complex interplay between strategy, personality, and the considered emotion response. Based on these outcomes, further clinical aspects and recommendations will be also discussed.

SeminarPsychology

Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience

Alexander Latinjak
University of Suffolk
Mar 3, 2024

This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?

SeminarNeuroscience

Dyslexia, Rhythm, Language and the Developing Brain

Usha Goswami CBE
University of Cambridge
Feb 21, 2024

Recent insights from auditory neuroscience provide a new perspective on how the brain encodes speech. Using these recent insights, I will provide an overview of key factors underpinning individual differences in children’s development of language and phonology, providing a context for exploring atypical reading development (dyslexia). Children with dyslexia are relatively insensitive to acoustic cues related to speech rhythm patterns. This lack of rhythmic sensitivity is related to the atypical neural encoding of rhythm patterns in speech by the brain. I will describe our recent data from infants as well as children, demonstrating developmental continuity in the key neural variables.

SeminarNeuroscience

Using Adversarial Collaboration to Harness Collective Intelligence

Lucia Melloni
Max Planck Institute for Empirical Aesthetics
Jan 24, 2024

There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.

SeminarPsychology

Are integrative, multidisciplinary, and pragmatic models possible? The #PsychMapping experience

Alexander Latinjak
University of Suffolk
Jan 7, 2024

This presentation delves into the necessity for simplified models in the field of psychological sciences to cater to a diverse audience of practitioners. We introduce the #PsychMapping model, evaluate its merits and limitations, and discuss its place in contemporary scientific culture. The #PsychMapping model is the product of an extensive literature review, initially within the realm of sport and exercise psychology and subsequently encompassing a broader spectrum of psychological sciences. This model synthesizes the progress made in psychological sciences by categorizing variables into a framework that distinguishes between traits (e.g., body structure and personality) and states (e.g., heart rate and emotions). Furthermore, it delineates internal traits and states from the externalized self, which encompasses behaviour and performance. All three components—traits, states, and the externalized self—are in a continuous interplay with external physical, social, and circumstantial factors. Two core processes elucidate the interactions among these four primary clusters: external perception, encompassing the mechanism through which external stimuli transition into internal events, and self-regulation, which empowers individuals to become autonomous agents capable of exerting control over themselves and their actions. While the model inherently oversimplifies intricate processes, the central question remains: does its pragmatic utility outweigh its limitations, and can it serve as a valuable tool for comprehending human behaviour?

SeminarPsychology

Characterising Representations of Goal Obstructiveness and Uncertainty Across Behavior, Physiology, and Brain Activity Through a Video Game Paradigm

Mi Xue Tan
University of Geneva
Dec 17, 2023

The nature of emotions and their neural underpinnings remain debated. Appraisal theories such as the component process model propose that the perception and evaluation of events (appraisal) is the key to eliciting the range of emotions we experience. Here we study whether the framework of appraisal theories provides a clearer account for the differentiation of emotional episodes and their functional organisation in the brain. We developed a stealth game to manipulate appraisals in a systematic yet immersive way. The interactive nature of video games heightens self-relevance through the experience of goal-directed action or reaction, evoking strong emotions. We show that our manipulations led to changes in behaviour, physiology and brain activations.

SeminarNeuroscienceRecording

Event-related frequency adjustment (ERFA): A methodology for investigating neural entrainment

Mattia Rosso
Ghent University, IPEM Institute for Systematic Musicology
Nov 28, 2023

Neural entrainment has become a phenomenon of exceptional interest to neuroscience, given its involvement in rhythm perception, production, and overt synchronized behavior. Yet, traditional methods fail to quantify neural entrainment due to a misalignment with its fundamental definition (e.g., see Novembre and Iannetti, 2018; Rajandran and Schupp, 2019). The definition of entrainment assumes that endogenous oscillatory brain activity undergoes dynamic frequency adjustments to synchronize with environmental rhythms (Lakatos et al., 2019). Following this definition, we recently developed a method sensitive to this process. Our aim was to isolate from the electroencephalographic (EEG) signal an oscillatory component that is attuned to the frequency of a rhythmic stimulation, hypothesizing that the oscillation would adaptively speed up and slow down to achieve stable synchronization over time. To induce and measure these adaptive changes in a controlled fashion, we developed the event-related frequency adjustment (ERFA) paradigm (Rosso et al., 2023). A total of twenty healthy participants took part in our study. They were instructed to tap their finger synchronously with an isochronous auditory metronome, which was unpredictably perturbed by phase-shifts and tempo-changes in both positive and negative directions across different experimental conditions. EEG was recorded during the task, and ERFA responses were quantified as changes in instantaneous frequency of the entrained component. Our results indicate that ERFAs track the stimulus dynamics in accordance with the perturbation type and direction, preferentially for a sensorimotor component. The clear and consistent patterns confirm that our method is sensitive to the process of frequency adjustment that defines neural entrainment. In this Virtual Journal Club, the discussion of our findings will be complemented by methodological insights beneficial to researchers in the fields of rhythm perception and production, as well as timing in general. We discuss the dos and don’ts of using instantaneous frequency to quantify oscillatory dynamics, the advantages of adopting a multivariate approach to source separation, the robustness against the confounder of responses evoked by periodic stimulation, and provide an overview of domains and concrete examples where the methodological framework can be applied.

SeminarCognition

Great ape interaction: Ladyginian but not Gricean

Thom Scott-Phillips
Institute for Logic, Cognition, Language and Information
Nov 20, 2023

Non-human great apes inform one another in ways that can seem very humanlike. Especially in the gestural domain, their behavior exhibits many similarities with human communication, meeting widely used empirical criteria for intentionality. At the same time, there remain some manifest differences. How to account for these similarities and differences in a unified way remains a major challenge. This presentation will summarise the arguments developed in a recent paper with Christophe Heintz. We make a key distinction between the expression of intentions (Ladyginian) and the expression of specifically informative intentions (Gricean), and we situate this distinction within a ‘special case of’ framework for classifying different modes of attention manipulation. The paper also argues that the attested tendencies of great ape interaction—for instance, to be dyadic rather than triadic, to be about the here-and-now rather than ‘displaced’—are products of its Ladyginian but not Gricean character. I will reinterpret video footage of great ape gesture as Ladyginian but not Gricean, and distinguish several varieties of meaning that are continuous with one another. We conclude that the evolutionary origins of linguistic meaning lie in gradual changes in not communication systems as such, but rather in social cognition, and specifically in what modes of attention manipulation are enabled by a species’ cognitive phenotype: first Ladyginian and in turn Gricean. The second of these shifts rendered humans, and only humans, ‘language ready’.

SeminarArtificial IntelligenceRecording

Mathematical and computational modelling of ocular hemodynamics: from theory to applications

Giovanna Guidoboni
University of Maine
Nov 13, 2023

Changes in ocular hemodynamics may be indicative of pathological conditions in the eye (e.g. glaucoma, age-related macular degeneration), but also elsewhere in the body (e.g. systemic hypertension, diabetes, neurodegenerative disorders). Thanks to its transparent fluids and structures that allow the light to go through, the eye offers a unique window on the circulation from large to small vessels, and from arteries to veins. Deciphering the causes that lead to changes in ocular hemodynamics in a specific individual could help prevent vision loss as well as aid in the diagnosis and management of diseases beyond the eye. In this talk, we will discuss how mathematical and computational modelling can help in this regard. We will focus on two main factors, namely blood pressure (BP), which drives the blood flow through the vessels, and intraocular pressure (IOP), which compresses the vessels and may impede the flow. Mechanism-driven models translates fundamental principles of physics and physiology into computable equations that allow for identification of cause-to-effect relationships among interplaying factors (e.g. BP, IOP, blood flow). While invaluable for causality, mechanism-driven models are often based on simplifying assumptions to make them tractable for analysis and simulation; however, this often brings into question their relevance beyond theoretical explorations. Data-driven models offer a natural remedy to address these short-comings. Data-driven methods may be supervised (based on labelled training data) or unsupervised (clustering and other data analytics) and they include models based on statistics, machine learning, deep learning and neural networks. Data-driven models naturally thrive on large datasets, making them scalable to a plethora of applications. While invaluable for scalability, data-driven models are often perceived as black- boxes, as their outcomes are difficult to explain in terms of fundamental principles of physics and physiology and this limits the delivery of actionable insights. The combination of mechanism-driven and data-driven models allows us to harness the advantages of both, as mechanism-driven models excel at interpretability but suffer from a lack of scalability, while data-driven models are excellent at scale but suffer in terms of generalizability and insights for hypothesis generation. This combined, integrative approach represents the pillar of the interdisciplinary approach to data science that will be discussed in this talk, with application to ocular hemodynamics and specific examples in glaucoma research.

SeminarPsychology

Investigating face processing impairments in Developmental Prosopagnosia: Insights from behavioural tasks and lived experience

Judith Lowes
University of Stirling
Nov 13, 2023

The defining characteristic of development prosopagnosia is severe difficulty recognising familiar faces in everyday life. Numerous studies have reported that the condition is highly heterogeneous in terms of both presentation and severity with many mixed findings in the literature. I will present behavioural data from a large face processing test battery (n = 24 DPs) as well as some early findings from a larger survey of the lived experience of individuals with DP and discuss how insights from individuals' real-world experience can help to understand and interpret lab-based data.

SeminarNeuroscience

Identifying mechanisms of cognitive computations from spikes

Tatiana Engel
Princeton
Nov 2, 2023

Higher cortical areas carry a wide range of sensory, cognitive, and motor signals supporting complex goal-directed behavior. These signals mix in heterogeneous responses of single neurons, making it difficult to untangle underlying mechanisms. I will present two approaches for revealing interpretable circuit mechanisms from heterogeneous neural responses during cognitive tasks. First, I will show a flexible nonparametric framework for simultaneously inferring population dynamics on single trials and tuning functions of individual neurons to the latent population state. When applied to recordings from the premotor cortex during decision-making, our approach revealed that populations of neurons encoded the same dynamic variable predicting choices, and heterogeneous firing rates resulted from the diverse tuning of single neurons to this decision variable. The inferred dynamics indicated an attractor mechanism for decision computation. Second, I will show an approach for inferring an interpretable network model of a cognitive task—the latent circuit—from neural response data. We developed a theory to causally validate latent circuit mechanisms via patterned perturbations of activity and connectivity in the high-dimensional network. This work opens new possibilities for deriving testable mechanistic hypotheses from complex neural response data.

SeminarNeuroscience

From controlled environments to complex realities: Exploring the interplay between perceived minds and attention

Alan Kingstone
University of British Columbia
Oct 11, 2023

In our daily lives, we perceive things as possessing a mind (e.g., people) or lacking one (e.g., shoes). Intriguingly, how much mind we attribute to people can vary, with real people perceived to have more mind than depictions of individuals, such as photographs. Drawing from a range of research methodologies, including naturalistic observation, mobile eye tracking, and surreptitious behavior monitoring, I discuss how various shades of mind influence human attention and behaviour. The findings suggest the novel concept that overt attention (where one looks) in real-life is fundamentally supported by covert attention (attending to someone out of the corner of one's eye).

SeminarPsychology

Touch in romantic relationships

Cheryl Carmichael
City University of New York
Sep 20, 2023

Responsive behavior is crucial to relationship quality and well-being across a variety of interpersonal domains. In this talk I will share research from studies in which we investigate how responsiveness is conveyed nonverbally in the context of male friendships and in heterosexual romantic relationships, largely focusing on affectionate touch as a nonverbal signal of understanding, validation, and care

SeminarNeuroscienceRecording

Social and non-social learning: Common, or specialised, mechanisms? (BACN Early Career Prize Lecture 2022)

Jennifer Cook
University of Birmingham, UK
Sep 11, 2023

The last decade has seen a burgeoning interest in studying the neural and computational mechanisms that underpin social learning (learning from others). Many findings support the view that learning from other people is underpinned by the same, ‘domain-general’, mechanisms underpinning learning from non-social stimuli. Despite this, the idea that humans possess social-specific learning mechanisms - adaptive specializations moulded by natural selection to cope with the pressures of group living - persists. In this talk I explore the persistence of this idea. First, I present dissociations between social and non-social learning - patterns of data which are difficult to explain under the domain-general thesis and which therefore support the idea that we have evolved special mechanisms for social learning. Subsequently, I argue that most studies that have dissociated social and non-social learning have employed paradigms in which social information comprises a secondary, additional, source of information that can be used to supplement learning from non-social stimuli. Thus, in most extant paradigms, social and non-social learning differ both in terms of social nature (social or non-social) and status (primary or secondary). I conclude that status is an important driver of apparent differences between social and non-social learning. When we account for differences in status, we see that social and non-social learning share common (dopamine-mediated) mechanisms.

SeminarNeuroscience

Sleep deprivation and the human brain: from brain physiology to cognition”

Ali Salehinejad
Leibniz Research Centre for Working Environment & Human Factors, Dortmund, Germany
Aug 28, 2023

Sleep strongly affects synaptic strength, making it critical for cognition, especially learning and memory formation. Whether and how sleep deprivation modulates human brain physiology and cognition is poorly understood. Here we examined how overnight sleep deprivation vs overnight sufficient sleep affects (a) cortical excitability, measured by transcranial magnetic stimulation, (b) inducibility of long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity via transcranial direct current stimulation (tDCS), and (c) learning, memory, and attention. We found that sleep deprivation increases cortical excitability due to enhanced glutamate-related cortical facilitation and decreases and/or reverses GABAergic cortical inhibition. Furthermore, tDCS-induced LTP-like plasticity (anodal) abolishes while the inhibitory LTD-like plasticity (cathodal) converts to excitatory LTP-like plasticity under sleep deprivation. This is associated with increased EEG theta oscillations due to sleep pressure. Motor learning, behavioral counterparts of plasticity, and working memory and attention, which rely on cortical excitability, are also impaired during sleep deprivation. Our study indicates that upscaled brain excitability and altered plasticity, due to sleep deprivation, are associated with impaired cognitive performance. Besides showing how brain physiology and cognition undergo changes (from neurophysiology to higher-order cognition) under sleep pressure, the findings have implications for variability and optimal application of noninvasive brain stimulation.

SeminarNeuroscienceRecording

Brain network communication: concepts, models and applications

Caio Seguin
Indiana University
Aug 23, 2023

Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.

SeminarNeuroscienceRecording

Epilepsy genetics 2023: From research to advanced clinical genetic test interpretation

Dennis Lal
Cleveland Clinic
Jun 20, 2023

The presentation will provide an overview of the expanding role of genetic factors in epilepsy. It will delve into the fundamentals of this field and elucidate how digital tools and resources can aid in the re-evaluation of genetic test results. In the initial segment of the presentation, Dr. Lal will examine the advancements made over the past two decades regarding the genetic architecture of various epilepsy types. Additionally, he will present research studies in which he has actively participated, offering concrete examples. Subsequently, during the second part of the talk, Dr. Lal will share the ongoing research projects that focus on epilepsy genetics, bioinformatics, and health record data science.

SeminarNeuroscience

Mechanisms Underlying the Persistence of Cancer-Related Fatigue

Elisabeth G. Vichaya
Baylor University
May 22, 2023

Cancer-related fatigue is a prominent and debilitating side effect of cancer and its treatment. It can develop prior to diagnosis, generally peaks during cancer treatment, and can persist long after treatment completion. Its mechanisms are multifactorial, and its expression is highly variable. Unfortunately, treatment options are limited. Our research uses syngeneic murine models of cancer and cisplatin-based chemotherapy to better understand these mechanisms. Our data indicate that both peripherally and centrally processes may contribute to the developmental of fatigue. These processes include metabolic alterations, mitochondrial dysfunction, pre-cachexia, and inflammation. However, our data has revealed that behavioral fatigue can persist even after the toxicity associated with cancer and its treatment recover. For example, running during cancer treatment attenuates kidney toxicity while also delaying recovery from fatigue-like behavior. Additionally, administration of anesthetics known to disrupt memory consolidation at the time treatment can promote recovery, and treatment-related cues can re-instate fatigue after recovery. Cancer-related fatigue can also promote habitual behavioral patterns, as observed using a devaluation task. We interpret this data to suggest that limit metabolic resources during cancer promote the utilization of habit-based behavioral strategies that serve to maintain fatigue behavior into survivorship. This line of work is exciting as it points us toward novel interventional targets for the treatment of persistent cancer-related fatigue.

SeminarNeuroscience

Richly structured reward predictions in dopaminergic learning circuits

Angela J. Langdon
National Institute of Mental Health at National Institutes of Health (NIH)
May 16, 2023

Theories from reinforcement learning have been highly influential for interpreting neural activity in the biological circuits critical for animal and human learning. Central among these is the identification of phasic activity in dopamine neurons as a reward prediction error signal that drives learning in basal ganglia and prefrontal circuits. However, recent findings suggest that dopaminergic prediction error signals have access to complex, structured reward predictions and are sensitive to more properties of outcomes than learning theories with simple scalar value predictions might suggest. Here, I will present recent work in which we probed the identity-specific structure of reward prediction errors in an odor-guided choice task and found evidence for multiple predictive “threads” that segregate reward predictions, and reward prediction errors, according to the specific sensory features of anticipated outcomes. Our results point to an expanded class of neural reinforcement learning algorithms in which biological agents learn rich associative structure from their environment and leverage it to build reward predictions that include information about the specific, and perhaps idiosyncratic, features of available outcomes, using these to guide behavior in even quite simple reward learning tasks.

SeminarPsychology

How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience

Nicolas Langer
University of Zurich
May 16, 2023

This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.

SeminarNeuroscience

The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks

Brian DePasquale
Princeton
May 2, 2023

Neural activity is often described in terms of population-level factors extracted from the responses of many neurons. Factors provide a lower-dimensional description with the aim of shedding light on network computations. Yet, mechanistically, computations are performed not by continuously valued factors but by interactions among neurons that spike discretely and variably. Models provide a means of bridging these levels of description. We developed a general method for training model networks of spiking neurons by leveraging factors extracted from either data or firing-rate-based networks. In addition to providing a useful model-building framework, this formalism illustrates how reliable and continuously valued factors can arise from seemingly stochastic spiking. Our framework establishes procedures for embedding this property in network models with different levels of realism. The relationship between spikes and factors in such networks provides a foundation for interpreting (and subtly redefining) commonly used quantities such as firing rates.

SeminarArtificial IntelligenceRecording

Computational models and experimental methods for the human cornea

Anna Pandolfi
Politecnico di Milano
May 1, 2023

The eye is a multi-component biological system, where mechanics, optics, transport phenomena and chemical reactions are strictly interlaced, characterized by the typical bio-variability in sizes and material properties. The eye’s response to external action is patient-specific and it can be predicted only by a customized approach, that accounts for the multiple physics and for the intrinsic microstructure of the tissues, developed with the aid of forefront means of computational biomechanics. Our activity in the last years has been devoted to the development of a comprehensive model of the cornea that aims at being entirely patient-specific. While the geometrical aspects are fully under control, given the sophisticated diagnostic machinery able to provide a fully three-dimensional images of the eye, the major difficulties are related to the characterization of the tissues, which require the setup of in-vivo tests to complement the well documented results of in-vitro tests. The interpretation of in-vivo tests is very complex, since the entire structure of the eye is involved and the characterization of the single tissue is not trivial. The availability of micromechanical models constructed from detailed images of the eye represents an important support for the characterization of the corneal tissues, especially in the case of pathologic conditions. In this presentation I will provide an overview of the research developed in our group in terms of computational models and experimental approaches developed for the human cornea.

SeminarCognition

Beyond Volition

Patrick Haggard
University College London
Apr 26, 2023

Voluntary actions are actions that agents choose to make. Volition is the set of cognitive processes that implement such choice and initiation. These processes are often held essential to modern societies, because they form the cognitive underpinning for concepts of individual autonomy and individual responsibility. Nevertheless, psychology and neuroscience have struggled to define volition, and have also struggled to study it scientifically. Laboratory experiments on volition, such as those of Libet, have been criticised, often rather naively, as focussing exclusively on meaningless actions, and ignoring the factors that make voluntary action important in the wider world. In this talk, I will first review these criticisms, and then look at extending scientific approaches to volition in three directions that may enrich scientific understanding of volition. First, volition becomes particularly important when the range of possible actions is large and unconstrained - yet most experimental paradigms involve minimal response spaces. We have developed a novel paradigm for eliciting de novo actions through verbal fluency, and used this to estimate the elusive conscious experience of generativity. Second, volition can be viewed as a mechanism for flexibility, by promoting adaptation of behavioural biases. This view departs from the tradition of defining volition by contrasting internally-generated actions with externally-triggered actions, and instead links volition to model-based reinforcement learning. By using the context of competitive games to re-operationalise the classic Libet experiment, we identified a form of adaptive autonomy that allows agents to reduce biases in their action choices. Interestingly, this mechanism seems not to require explicit understanding and strategic use of action selection rules, in contrast to classical ideas about the relation between volition and conscious, rational thought. Third, I will consider volition teleologically, as a mechanism for achieving counterfactual goals through complex problem-solving. This perspective gives a key role in mediating between understanding and planning on the one hand, and instrumental action on the other hand. Taken together, these three cognitive phenomena of generativity, flexibility, and teleology may partly explain why volition is such an important cognitive function for organisation of human behaviour and human flourishing. I will end by discussing how this enriched view of volition can relate to individual autonomy and responsibility.

SeminarNeuroscience

Precise spatio-temporal spike patterns in cortex and model

Sonia Gruen
Forschungszentrum Jülich, Germany
Apr 25, 2023

The cell assembly hypothesis postulates that groups of coordinated neurons form the basis of information processing. Here, we test this hypothesis by analyzing massively parallel spiking activity recorded in monkey motor cortex during a reach-to-grasp experiment for the presence of significant ms-precise spatio-temporal spike patterns (STPs). For this purpose, the parallel spike trains were analyzed for STPs by the SPADE method (Stella et al, 2019, Biosystems), which detects, counts and evaluates spike patterns for their significance by the use of surrogates (Stella et al, 2022 eNeuro). As a result we find STPs in 19/20 data sets (each of 15min) from two monkeys, but only a small fraction of the recorded neurons are involved in STPs. To consider the different behavioral states during the task, we analyzed the data in a quasi time-resolved analysis by dividing the data into behaviorally relevant time epochs. The STPs that occur in the various epochs are specific to behavioral context - in terms of neurons involved and temporal lags between the spikes of the STP. Furthermore we find, that the STPs often share individual neurons across epochs. Since we interprete the occurrence of a particular STP as the signature of a particular active cell assembly, our interpretation is that the neurons multiplex their cell assembly membership. In a related study, we model these findings by networks with embedded synfire chains (Kleinjohann et al, 2022, bioRxiv 2022.08.02.502431).

SeminarNeuroscience

Dynamic endocrine modulation of the nervous system

Emily Jabocs
US Santa Barbara Neuroscience
Apr 17, 2023

Sex hormones are powerful neuromodulators of learning and memory. In rodents and nonhuman primates estrogen and progesterone influence the central nervous system across a range of spatiotemporal scales. Yet, their influence on the structural and functional architecture of the human brain is largely unknown. Here, I highlight findings from a series of dense-sampling neuroimaging studies from my laboratory designed to probe the dynamic interplay between the nervous and endocrine systems. Individuals underwent brain imaging and venipuncture every 12-24 hours for 30 consecutive days. These procedures were carried out under freely cycling conditions and again under a pharmacological regimen that chronically suppresses sex hormone production. First, resting state fMRI evidence suggests that transient increases in estrogen drive robust increases in functional connectivity across the brain. Time-lagged methods from dynamical systems analysis further reveals that these transient changes in estrogen enhance within-network integration (i.e. global efficiency) in several large-scale brain networks, particularly Default Mode and Dorsal Attention Networks. Next, using high-resolution hippocampal subfield imaging, we found that intrinsic hormone fluctuations and exogenous hormone manipulations can rapidly and dynamically shape medial temporal lobe morphology. Together, these findings suggest that neuroendocrine factors influence the brain over short and protracted timescales.

SeminarNeuroscienceRecording

Asymmetric signaling across the hierarchy of cytoarchitecture within the human connectome

Linden Parkes
Rutgers Brain Health Institute
Mar 21, 2023

Cortical variations in cytoarchitecture form a sensory-fugal axis that shapes regional profiles of extrinsic connectivity and is thought to guide signal propagation and integration across the cortical hierarchy. While neuroimaging work has shown that this axis constrains local properties of the human connectome, it remains unclear whether it also shapes the asymmetric signaling that arises from higher-order topology. Here, we used network control theory to examine the amount of energy required to propagate dynamics across the sensory-fugal axis. Our results revealed an asymmetry in this energy, indicating that bottom-up transitions were easier to complete compared to top-down. Supporting analyses demonstrated that asymmetries were underpinned by a connectome topology that is wired to support efficient bottom-up signaling. Lastly, we found that asymmetries correlated with differences in communicability and intrinsic neuronal time scales and lessened throughout youth. Our results show that cortical variation in cytoarchitecture may guide the formation of macroscopic connectome topology.

SeminarNeuroscienceRecording

Are place cells just memory cells? Probably yes

Stefano Fusi
Columbia University, New York
Mar 21, 2023

Neurons in the rodent hippocampus appear to encode the position of the animal in physical space during movement. Individual ``place cells'' fire in restricted sub-regions of an environment, a feature often taken as evidence that the hippocampus encodes a map of space that subserves navigation. But these same neurons exhibit complex responses to many other variables that defy explanation by position alone, and the hippocampus is known to be more broadly critical for memory formation. Here we elaborate and test a theory of hippocampal coding which produces place cells as a general consequence of efficient memory coding. We constructed neural networks that actively exploit the correlations between memories in order to learn compressed representations of experience. Place cells readily emerged in the trained model, due to the correlations in sensory input between experiences at nearby locations. Notably, these properties were highly sensitive to the compressibility of the sensory environment, with place field size and population coding level in dynamic opposition to optimally encode the correlations between experiences. The effects of learning were also strongly biphasic: nearby locations are represented more similarly following training, while locations with intermediate similarity become increasingly decorrelated, both distance-dependent effects that scaled with the compressibility of the input features. Using virtual reality and 2-photon functional calcium imaging in head-fixed mice, we recorded the simultaneous activity of thousands of hippocampal neurons during virtual exploration to test these predictions. Varying the compressibility of sensory information in the environment produced systematic changes in place cell properties that reflected the changing input statistics, consistent with the theory. We similarly identified representational plasticity during learning, which produced a distance-dependent exchange between compression and pattern separation. These results motivate a more domain-general interpretation of hippocampal computation, one that is naturally compatible with earlier theories on the circuit's importance for episodic memory formation. Work done in collaboration with James Priestley, Lorenzo Posani, Marcus Benna, Attila Losonczy.

SeminarNeuroscienceRecording

Autopoiesis and Enaction in the Game of Life

Randall Beer
Indiana University
Mar 16, 2023

Enaction plays a central role in the broader fabric of so-called 4E (embodied, embedded, extended, enactive) cognition. Although the origin of the enactive approach is widely dated to the 1991 publication of the book "The Embodied Mind" by Varela, Thompson and Rosch, many of the central ideas trace to much earlier work. Over 40 years ago, the Chilean biologists Humberto Maturana and Francisco Varela put forward the notion of autopoiesis as a way to understand living systems and the phenomena that they generate, including cognition. Varela and others subsequently extended this framework to an enactive approach that places biological autonomy at the foundation of situated and embodied behavior and cognition. I will describe an attempt to place Maturana and Varela's original ideas on a firmer foundation by studying them within the context of a toy model universe, John Conway's Game of Life (GoL) cellular automata. This work has both pedagogical and theoretical goals. Simple concrete models provide an excellent vehicle for introducing some of the core concepts of autopoiesis and enaction and explaining how these concepts fit together into a broader whole. In addition, a careful analysis of such toy models can hone our intuitions about these concepts, probe their strengths and weaknesses, and move the entire enterprise in the direction of a more mathematically rigorous theory. In particular, I will identify the primitive processes that can occur in GoL, show how these can be linked together into mutually-supporting networks that underlie persistent bounded entities, map the responses of such entities to environmental perturbations, and investigate the paths of mutual perturbation that these entities and their environments can undergo.

SeminarNeuroscienceRecording

How Children Design by Analogy: The Role of Spatial Thinking

Caiwei Zhu
Delft University of Technology
Mar 15, 2023

Analogical reasoning is a common reasoning tool for learning and problem-solving. Existing research has extensively studied children’s reasoning when comparing, or choosing from ready-made analogies. Relatively less is known about how children come up with analogies in authentic learning environments. Design education provides a suitable context to investigate how children generate analogies for creative learning purposes. Meanwhile, the frequent use of visual analogies in design provides an additional opportunity to understand the role of spatial reasoning in design-by-analogy. Spatial reasoning is one of the most studied human cognitive factors and is critical to the learning of science, technology, engineering, arts, and mathematics (STEAM). There is growing interest in exploring the interplay between analogical reasoning and spatial reasoning. In this talk, I will share qualitative findings from a case study, where a class of 11-to-12-year-olds in the Netherlands participated in a biomimicry design project. These findings illustrate (1) practical ways to support children’s analogical reasoning in the ideation process and (2) the potential role of spatial reasoning as seen in children mapping form-function relationships in nature analogically and adaptively to those in human designs.

SeminarNeuroscience

Integration of 3D human stem cell models derived from post-mortem tissue and statistical genomics to guide schizophrenia therapeutic development

Jennifer Erwin, Ph.D
Lieber Institute for Brain Development; Department of Neurology and Neuroscience; Johns Hopkins University School of Medicine
Mar 14, 2023

Schizophrenia is a neuropsychiatric disorder characterized by positive symptoms (such as hallucinations and delusions), negative symptoms (such as avolition and withdrawal) and cognitive dysfunction1. Schizophrenia is highly heritable, and genetic studies are playing a pivotal role in identifying potential biomarkers and causal disease mechanisms with the hope of informing new treatments. Genome-wide association studies (GWAS) identified nearly 270 loci with a high statistical association with schizophrenia risk; however each locus confers only a small increase in risk therefore it is difficult to translate these findings into understanding disease biology that can lead to treatments. Induced pluripotent stem cell (iPSC) models are a tractable system to translate genetic findings and interrogate mechanisms of pathogenesis. Mounting research with patient-derived iPSCs has proposed several neurodevelopmental pathways altered in SCZ, such as neural progenitor cell (NPC) proliferation, imbalanced differentiation of excitatory and inhibitory cortical neurons. However, it is unclear what exactly these iPS models recapitulate, how potential perturbations of early brain development translates into illness in adults and how iPS models that represent fetal stages can be utilized to further drug development efforts to treat adult illness. I will present the largest transcriptome analysis of post-mortem caudate nucleus in schizophrenia where we discovered that decreased presynaptic DRD2 autoregulation is the causal dopamine risk factor for schizophrenia (Benjamin et al, Nature Neuroscience 2022 https://doi.org/10.1038/s41593-022-01182-7). We developed stem cell models from a subset of the postmortem cohort to better understand the molecular underpinnings of human psychiatric disorders (Sawada et al, Stem Cell Research 2020). We established a method for the differentiation of iPS cells into ventral forebrain organoids and performed single cell RNAseq and cellular phenotyping. To our knowledge, this is the first study to evaluate iPSC models of SZ from the same individuals with postmortem tissue. Our study establishes that striatal neurons in the patients with SCZ carry abnormalities that originated during early brain development. Differentiation of inhibitory neurons is accelerated whereas excitatory neuronal development is delayed, implicating an excitation and inhibition (E-I) imbalance during early brain development in SCZ. We found a significant overlap of genes upregulated in the inhibitory neurons in SCZ organoids with upregulated genes in postmortem caudate tissues from patients with SCZ compared with control individuals, including the donors of our iPS cell cohort. Altogether, we demonstrate that ventral forebrain organoids derived from postmortem tissue of individuals with schizophrenia recapitulate perturbed striatal gene expression dynamics of the donors’ brains (Sawada et al, biorxiv 2022 https://doi.org/10.1101/2022.05.26.493589).

SeminarNeuroscienceRecording

Interplay between circuits that mediate spontaneous retinal waves and early light responses during retinal development

Marla Feller
University of California, Berkeley
Feb 12, 2023
SeminarNeuroscience

Cell-type specific alterations underpinning convergent ASD phenotypes in PACS1 neurodevelopmental disorder

Alicia Guemez-Gamboa
Northwestern University Feinberg School of Medicine
Feb 7, 2023
SeminarNeuroscienceRecording

Understanding Machine Learning via Exactly Solvable Statistical Physics Models

Lenka Zdeborová
EPFL
Feb 7, 2023

The affinity between statistical physics and machine learning has a long history. I will describe the main lines of this long-lasting friendship in the context of current theoretical challenges and open questions about deep learning. Theoretical physics often proceeds in terms of solvable synthetic models, I will describe the related line of work on solvable models of simple feed-forward neural networks. I will highlight a path forward to capture the subtle interplay between the structure of the data, the architecture of the network, and the optimization algorithms commonly used for learning.

SeminarNeuroscienceRecording

Children-Agent Interaction For Assessment and Rehabilitation: From Linguistic Skills To Mental Well-being

Micole Spitale
Department of Computer Science and Technology, University of Cambridge
Feb 6, 2023

Socially Assistive Robots (SARs) have shown great potential to help children in therapeutic and healthcare contexts. SARs have been used for companionship, learning enhancement, social and communication skills rehabilitation for children with special needs (e.g., autism), and mood improvement. Robots can be used as novel tools to assess and rehabilitate children’s communication skills and mental well-being by providing affordable and accessible therapeutic and mental health services. In this talk, I will present the various studies I have conducted during my PhD and at the Cambridge Affective Intelligence and Robotics Lab to explore how robots can help assess and rehabilitate children’s communication skills and mental well-being. More specifically, I will provide both quantitative and qualitative results and findings from (i) an exploratory study with children with autism and global developmental disorders to investigate the use of intelligent personal assistants in therapy; (ii) an empirical study involving children with and without language disorders interacting with a physical robot, a virtual agent, and a human counterpart to assess their linguistic skills; (iii) an 8-week longitudinal study involving children with autism and language disorders who interacted either with a physical or a virtual robot to rehabilitate their linguistic skills; and (iv) an empirical study to aid the assessment of mental well-being in children. These findings can inform and help the child-robot interaction community design and develop new adaptive robots to help assess and rehabilitate linguistic skills and mental well-being in children.

SeminarNeuroscienceRecording

Visual Perception in Cerebral Visual Impairment (CVI)

Lotfi Merabet
Mass Eye and Ear, Harvard Medical School
Jan 18, 2023
SeminarNeuroscience

The impact of emerging technologies and methods on the interpretation of genetic variation in autism and fetal genomics

Michael Talkowski
Massachusetts General Hospital, Broad Institute of MIT and Harvard, Harvard Medical School
Dec 6, 2022
SeminarNeuroscienceRecording

Network inference via process motifs for lagged correlation in linear stochastic processes

Alice Schwarze
Dartmouth College
Nov 16, 2022

A major challenge for causal inference from time-series data is the trade-off between computational feasibility and accuracy. Motivated by process motifs for lagged covariance in an autoregressive model with slow mean-reversion, we propose to infer networks of causal relations via pairwise edge measure (PEMs) that one can easily compute from lagged correlation matrices. Motivated by contributions of process motifs to covariance and lagged variance, we formulate two PEMs that correct for confounding factors and for reverse causation. To demonstrate the performance of our PEMs, we consider network interference from simulations of linear stochastic processes, and we show that our proposed PEMs can infer networks accurately and efficiently. Specifically, for slightly autocorrelated time-series data, our approach achieves accuracies higher than or similar to Granger causality, transfer entropy, and convergent crossmapping -- but with much shorter computation time than possible with any of these methods. Our fast and accurate PEMs are easy-to-implement methods for network inference with a clear theoretical underpinning. They provide promising alternatives to current paradigms for the inference of linear models from time-series data, including Granger causality, vector-autoregression, and sparse inverse covariance estimation.

SeminarNeuroscienceRecording

Universal function approximation in balanced spiking networks through convex-concave boundary composition

W. F. Podlaski
Champalimaud
Nov 9, 2022

The spike-threshold nonlinearity is a fundamental, yet enigmatic, component of biological computation — despite its role in many theories, it has evaded definitive characterisation. Indeed, much classic work has attempted to limit the focus on spiking by smoothing over the spike threshold or by approximating spiking dynamics with firing-rate dynamics. Here, we take a novel perspective that captures the full potential of spike-based computation. Based on previous studies of the geometry of efficient spike-coding networks, we consider a population of neurons with low-rank connectivity, allowing us to cast each neuron’s threshold as a boundary in a space of population modes, or latent variables. Each neuron divides this latent space into subthreshold and suprathreshold areas. We then demonstrate how a network of inhibitory (I) neurons forms a convex, attracting boundary in the latent coding space, and a network of excitatory (E) neurons forms a concave, repellant boundary. Finally, we show how the combination of the two yields stable dynamics at the crossing of the E and I boundaries, and can be mapped onto a constrained optimization problem. The resultant EI networks are balanced, inhibition-stabilized, and exhibit asynchronous irregular activity, thereby closely resembling cortical networks of the brain. Moreover, we demonstrate how such networks can be tuned to either suppress or amplify noise, and how the composition of inhibitory convex and excitatory concave boundaries can result in universal function approximation. Our work puts forth a new theory of biologically-plausible computation in balanced spiking networks, and could serve as a novel framework for scalable and interpretable computation with spikes.

SeminarNeuroscienceRecording

Beyond Biologically Plausible Spiking Networks for Neuromorphic Computing

A. Subramoney
University of Bochum
Nov 8, 2022

Biologically plausible spiking neural networks (SNNs) are an emerging architecture for deep learning tasks due to their energy efficiency when implemented on neuromorphic hardware. However, many of the biological features are at best irrelevant and at worst counterproductive when evaluated in the context of task performance and suitability for neuromorphic hardware. In this talk, I will present an alternative paradigm to design deep learning architectures with good task performance in real-world benchmarks while maintaining all the advantages of SNNs. We do this by focusing on two main features – event-based computation and activity sparsity. Starting from the performant gated recurrent unit (GRU) deep learning architecture, we modify it to make it event-based and activity-sparse. The resulting event-based GRU (EGRU) is extremely efficient for both training and inference. At the same time, it achieves performance close to conventional deep learning architectures in challenging tasks such as language modelling, gesture recognition and sequential MNIST.

SeminarNeuroscienceRecording

Nonlinear computations in spiking neural networks through multiplicative synapses

M. Nardin
IST Austria
Nov 8, 2022

The brain efficiently performs nonlinear computations through its intricate networks of spiking neurons, but how this is done remains elusive. While recurrent spiking networks implementing linear computations can be directly derived and easily understood (e.g., in the spike coding network (SCN) framework), the connectivity required for nonlinear computations can be harder to interpret, as they require additional non-linearities (e.g., dendritic or synaptic) weighted through supervised training. Here we extend the SCN framework to directly implement any polynomial dynamical system. This results in networks requiring multiplicative synapses, which we term the multiplicative spike coding network (mSCN). We demonstrate how the required connectivity for several nonlinear dynamical systems can be directly derived and implemented in mSCNs, without training. We also show how to precisely carry out higher-order polynomials with coupled networks that use only pair-wise multiplicative synapses, and provide expected numbers of connections for each synapse type. Overall, our work provides an alternative method for implementing nonlinear computations in spiking neural networks, while keeping all the attractive features of standard SCNs such as robustness, irregular and sparse firing, and interpretable connectivity. Finally, we discuss the biological plausibility of mSCNs, and how the high accuracy and robustness of the approach may be of interest for neuromorphic computing.

SeminarNeuroscienceRecording

No Free Lunch from Deep Learning in Neuroscience: A Case Study through Models of the Entorhinal-Hippocampal Circuit

Rylan Schaeffer
Fiete lab, MIT
Nov 1, 2022

Research in Neuroscience, as in many scientific disciplines, is undergoing a renaissance based on deep learning. Unique to Neuroscience, deep learning models can be used not only as a tool but interpreted as models of the brain. The central claims of recent deep learning-based models of brain circuits are that they shed light on fundamental functions being optimized or make novel predictions about neural phenomena. We show, through the case-study of grid cells in the entorhinal-hippocampal circuit, that one may get neither. We rigorously examine the claims of deep learning models of grid cells using large-scale hyperparameter sweeps and theory-driven experimentation, and demonstrate that the results of such models are more strongly driven by particular, non-fundamental, and post-hoc implementation choices than fundamental truths about neural circuits or the loss function(s) they might optimize. We discuss why these models cannot be expected to produce accurate models of the brain without the addition of substantial amounts of inductive bias, an informal No Free Lunch result for Neuroscience.

SeminarNeuroscienceRecording

From Machine Learning to Autonomous Intelligence

Yann Le Cun
Meta-FAIR & Meta AI
Oct 18, 2022

How could machines learn as efficiently as humans and animals? How could machines learn to reason and plan? How could machines learn representations of percepts and action plans at multiple levels of abstraction, enabling them to reason, predict, and plan at multiple time horizons? I will propose a possible path towards autonomous intelligent agents, based on a new modular cognitive architecture and a somewhat new self supervised training paradigm. The centerpiece of the proposed architecture is a configurable predictive world model that allows the agent to plan. Behavior and learning are driven by a set of differentiable intrinsic cost functions. The world model uses a new type of energy-based model architecture called H-JEPA (Hierarchical Joint Embedding Predictive Architecture). H-JEPA learns hierarchical abstract representations of the world that are simultaneously maximally informative and maximally predictable.

ePoster

Neuronal bursting from an interplay of fast voltage and slow concentration dynamics mediated by the Na+/K+-ATPase

Mahraz Behbood, Louisiane Lemaire, Jan-Hendrik Schleimer, Susanne Schreiber

Bernstein Conference 2024

ePoster

Model Selection in Sensory Data Interpretation

Francesco Guido Rinaldi, Eugenio Piasini

Bernstein Conference 2024

ePoster

Emergence of time persistence in an interpretable data-driven neural network model

COSYNE 2022

ePoster

The interplay between prediction and integration processes in human perception

COSYNE 2022

ePoster

Interpretable behavioral features have conserved neural representations across mice

COSYNE 2022

ePoster

An interpretable spline-LNP model to characterize feedforward and feedback processing in mouse dLGN

COSYNE 2022

ePoster

The interplay between prediction and integration processes in human perception

COSYNE 2022

ePoster

An interpretable dynamic population-rate equation for adapting non-linear spiking neural populations

COSYNE 2022

ePoster

Interpretable behavioral features have conserved neural representations across mice

COSYNE 2022

ePoster

An interpretable dynamic population-rate equation for adapting non-linear spiking neural populations

COSYNE 2022

ePoster

An interpretable spline-LNP model to characterize feedforward and feedback processing in mouse dLGN

COSYNE 2022

ePoster

Modeling Hippocampal Spatial Learning Through a Valence-based Interplay of Dopamine and Serotonin

COSYNE 2022

ePoster

Modeling Hippocampal Spatial Learning Through a Valence-based Interplay of Dopamine and Serotonin

COSYNE 2022

ePoster

Supervised learning and interpretation of plasticity rules in spiking neural networks

COSYNE 2022

ePoster

Supervised learning and interpretation of plasticity rules in spiking neural networks

COSYNE 2022

ePoster

Using 1D-convolutional neural networks to detect and interpret sharp-wave ripples

COSYNE 2022

ePoster

Using 1D-convolutional neural networks to detect and interpret sharp-wave ripples

COSYNE 2022

ePoster

“Attentional fingerprints” in conceptual space: Reliable, individuating patterns of visual attention revealed using natural language modeling

Caroline Robertson, Katherine Packard, Amanda Haskins

COSYNE 2023

ePoster

Semi-supervised quantification and interpretation of undirected human behavior

Zhanqi Zhang, Yichi Yang, Timothy Sheehan, Chi Chou, Holden Rosberg, William Perry, Jared Young, Arpi Minassian, Gal Mishne, Mikio Aoi

COSYNE 2023

ePoster

Sparse Component Analysis: An interpretable dimensionality reduction tool that identifies building blocks of neural computation

Joshua Glaser, Andrew Zimnik, Vladislav Susoy, Liam Paninski, John Cunningham, Mark Churchland

COSYNE 2023

ePoster

New tools for recording and interpreting brain-wide activity in C. elegans

Jungsoo Kim, Adam Atanas, Ziyu Wang, Eric Bueno, McCoy Becker, Di Kang, Jungyeon Park, Cassi Estrem, Talya Kramer, Saba Baskoylu, Vikash Mansingkha, Steven Flavell

COSYNE 2023

ePoster

Automated discovery of interpretable cognitive programs underlying reward-guided behavior

Pablo Samuel Castro, Nenad Tomasev, Ankit Anand, Navodita Sharma, Alexander Novikov, Kuba Perlin, Noemi Elteto, Siddhant Jain, Kyle Levin, Maria Eckstein, Will Dabney, Nathaniel Daw, Kimberly Stachenfeld, Kevin J Miller

COSYNE 2025

ePoster

Connectome Interpreter: a toolkit for efficient connectome exploration and hypothesis generation

Yijie Yin, Mateo Espinosa Zarlenga, Alexander Mathiasen, Gregory Jefferis, Albert Cardona

COSYNE 2025

ePoster

Data-driven evaluation of interpretive framework for model-based planning

David Kastner, Peter Dayan

COSYNE 2025

ePoster

Ethological foraging fingerprints reveal heterogeneous effects of serotonergic neuromodulation

Daniel Burnham, Elisabete Augusto, Zachary Mainen, Fanny Cazettes, Luca Mazzucato

COSYNE 2025

ePoster

A flexible and interpretable statistical model of distributed neural computation

Matthew Dowling, Cristina Savin

COSYNE 2025

ePoster

Interpretable “component-encoding” models for multi-experiment integration

David Skrill, Samuel Norman-Haignere

COSYNE 2025

ePoster

Mixtures of decoders for interpreting dynamic neural-behavioral mappings

Andrew Shen, Xuan Ma, David Xing, Xinyue An, Andrew Miri, Lee Miller, Joshua Glaser

COSYNE 2025

ePoster

NetFormer: An interpretable model for recovering dynamical connectivity in neural populations

Wuwei Zhang, Ziyu Lu, Trung Le, Hao Wang, Uygar Sumbul, Eric Shea-Brown, Lu Mi

COSYNE 2025

ePoster

Affective expectations are modulated by the interplay between visceral signals and uncertainty of the sensory environment

Alexandrina Vasilichi, Niia Nikolova, Peter Dayan, Micah Allen

FENS Forum 2024

ePoster

Alteration of neuron-astrocyte interplay in the early phase of Alzheimer’s disease

Apolline Pierre, Adrien Paumier, Sylvie Boisseau, Quentin Rodriguez, Alain Buisson, Mireille Albrieux

FENS Forum 2024

ePoster

Cellular and circuit underpinnings of social behaviour adaptations

Myrto Panopoulou, Julia Odermatt, Delia Christ, Peter Scheiffele

FENS Forum 2024

ePoster

Central role of the habenulo-interpeduncular system in the neurodevelopmental basis of susceptibility and resilience to anxiety

Fabien D'Autréaux, Malalaniaina Rakotobe, Niels Fjerdingstad, Nuria Ruiz Reig, Thomas Lamonerie

FENS Forum 2024

ePoster

Cholinergic system and amyloid beta (Aβ) interplay at tripartite glutamatergic synapses in an alternative mouse model of Alzheimer’s disease

Manuela Tore, Nicole Tonesi, Irene Incerti, Paolo Pozzi, Miriam Cavagnini, Jonathan Mapelli, Gabriele Losi

FENS Forum 2024

ePoster

Combined expansion and STED microscopy reveals fingerprints of synaptic nanostructure across brain regions and in ASD-related SHANK3 deficiency

Jan Philipp Delling, Helen Friedericke Bauer, Susanne Gerlach-Arbeiter, Michael Schön, Christian Jacob, Jan Wagner, Maria Teresa Pedro, Bernd Knöll, Tobias M. Böckers

FENS Forum 2024

ePoster

Deciphering internal processing states in the auditory cortex through dynamic interplay of evoked and spontaneous population activity

Andrey Sobolev, Miguel Bengala, Valentin Winhart, Benedikt Grothe, Anton Sirota, Michael Pecka

FENS Forum 2024

ePoster

Decoding the developmental vulnerability to psychiatric disorders: Investigating the sexual dimorphism and role of perineuronal nets in habenulo-interpeduncular-system-mediated susceptibility to anxiety

Niels Fjerdingstad, Malalaniaina Rakotobe, Adrien Chopin, Thomas Lamonerie, Fabien D'AUTREAUX

FENS Forum 2024

ePoster

Dopamine-acetylcholine interplay and neural activity motifs in the striatum: Insights from a mouse delayed-go reaching task

Teris, Wing Kin Tam, Rasha Elghaba, Kouichi Nakamura, Julien Carponcy, Guy Yona, Peter J. Magill

FENS Forum 2024

ePoster

Enhancing hypothesis testing via interpretable machine learning frameworks

David Steyrl, Alexander Karner, Blanca Thea Maria Spee, Frank Scharnowski

FENS Forum 2024

ePoster

Exploring the interplay of gait and anxiety in a synucleinopathy model of Parkinson’s disease

Michael Schellenberger, Alexia Lantheaume, Dennis Doll, Konstantin Kobel, Silvia Rodriguez-Rozada, Philip Tovote

FENS Forum 2024