Ethical
ethical considerations
How AI is advancing Clinical Neuropsychology and Cognitive Neuroscience
This talk aims to highlight the immense potential of Artificial Intelligence (AI) in advancing the field of psychology and cognitive neuroscience. Through the integration of machine learning algorithms, big data analytics, and neuroimaging techniques, AI has the potential to revolutionize the way we study human cognition and brain characteristics. In this talk, I will highlight our latest scientific advancements in utilizing AI to gain deeper insights into variations in cognitive performance across the lifespan and along the continuum from healthy to pathological functioning. The presentation will showcase cutting-edge examples of AI-driven applications, such as deep learning for automated scoring of neuropsychological tests, natural language processing to characeterize semantic coherence of patients with psychosis, and other application to diagnose and treat psychiatric and neurological disorders. Furthermore, the talk will address the challenges and ethical considerations associated with using AI in psychological research, such as data privacy, bias, and interpretability. Finally, the talk will discuss future directions and opportunities for further advancements in this dynamic field.
In vitro bioelectronic models of the gut-brain axis
The human gut microbiome has emerged as a key player in the bidirectional communication of the gut-brain axis, affecting various aspects of homeostasis and pathophysiology. Until recently, the majority of studies that seek to explore the mechanisms underlying the microbiome-gut-brain axis cross-talk relied almost exclusively on animal models, and particularly gnotobiotic mice. Despite the great progress made with these models, various limitations, including ethical considerations and interspecies differences that limit the translatability of data to human systems, pushed researchers to seek for alternatives. Over the past decades, the field of in vitro modelling of tissues has experienced tremendous growth, thanks to advances in 3D cell biology, materials, science and bioengineering, pushing further the borders of our ability to more faithfully emulate the in vivo situation. Organ-on-chip technology and bioengineered tissues have emerged as highly promising alternatives to animal models for a wide range of applications. In this talk I’ll discuss our progress towards generating a complete platform of the human microbiota-gut-brain axis with integrated monitoring and sensing capabilities. Bringing together principles of materials science, tissue engineering, 3D cell biology and bioelectronics, we are building advanced models of the GI and the BBB /NVU, with real-time and label-free monitoring units adapted in the model architecture, towards a robust and more physiologically relevant human in vitro model, aiming to i) elucidate the role of microbiota in the gut-brain axis communication, ii) to study how diet and impaired microbiota profiles affect various (patho-)physiologies, and iii) to test personalised medicine approaches for disease modelling and drug testing.
The history, future and ethics of self-experimentation
Modern day “neurohackers” are radically self-experimenting, attempting genomic modification with CRISPR-Cas9 constructs and electrode insertion into their cortex amongst a host of other things. Institutions wanting to avoid the risks bought on by these procedures, generally avoid involvement with self-experimenting research. Modern day “neurohackers” are radically self-experimenting, attempting genomic modification with CRISPR-Cas9 constructs and electrode insertion into their cortex amongst a host of other things. Institutions wanting to avoid the risks bought on by these procedures, generally avoid involvement with self-experimenting research. But what is the ethical thing to do? Should researchers be allowed or encouraged to self-experiment? Should institutions support or hinder them? Where do you think that this process of self-experimentation could take us? This presentation by Dr Matt Lennon and Professor Zoltan Molnar of the University of Oxford, will explore the history, future and ethics of self-experimentation. It will explore notable examples of self-experimenters including Isaac Newton, Angelo Ruffini and Oliver Sacks and how a number of these pivotal experiments created paradigm shifts in neuroscience. The presentation will open up a forum for all participants to be involved asking key ethical questions around what should and should not be allowed in self-experimentation research.