Evolutionary History
evolutionary history
Conversations with Caves? Understanding the role of visual psychological phenomena in Upper Palaeolithic cave art making
How central were psychological features deriving from our visual systems to the early evolution of human visual culture? Art making emerged deep in our evolutionary history, with the earliest art appearing over 100,000 years ago as geometric patterns etched on fragments of ochre and shell, and figurative representations of prey animals flourishing in the Upper Palaeolithic (c. 40,000 – 15,000 years ago). The latter reflects a complex visual process; the ability to represent something that exists in the real world as a flat, two-dimensional image. In this presentation, I argue that pareidolia – the psychological phenomenon of seeing meaningful forms in random patterns, such as perceiving faces in clouds – was a fundamental process that facilitated the emergence of figurative representation. The influence of pareidolia has often been anecdotally observed in Upper Palaeolithic art examples, particularly cave art where the topographic features of cave wall were incorporated into animal depictions. Using novel virtual reality (VR) light simulations, I tested three hypotheses relating to pareidolia in the caves of Upper Palaeolithic cave art in the caves of Las Monedas and La Pasiega (Cantabria, Spain). To evaluate this further, I also developed an interdisciplinary VR eye-tracking experiment, where participants were immersed in virtual caves based on the cave of El Castillo (Cantabria, Spain). Together, these case studies suggest that pareidolia was an intrinsic part of artist-cave interactions (‘conversations’) that influenced the form and placement of figurative depictions in the cave. This has broader implications for conceiving of the role of visual psychological phenomena in the emergence and development of figurative art in the Palaeolithic.
Untitled Seminar
G. Quattrocolo: Cajal-Retzius cells in the postnatal hippocampus; F. Garcia-Moreno: Mosaic evolutionary history of brain circuits through the lens of neurogenesis
As soon as there was life there was danger
Organisms face challenges to survival throughout life. When we freeze or flee in danger, we often feel fear. Tracing the deep history of danger gives a different perspective. The first cells living billions of years ago had to detect and respond to danger in order to survive. Life is about not being dead, and behavior is a major way that organisms hold death off. Although behavior does not require a nervous system, complex organisms have brain circuits for detecting and responding to danger, the deep roots of which go back to the first cells. But these circuits do not make fear, and fear is not the cause of why we freeze or flee. Fear a human invention; a construct we use to account for what happens in our minds when we become aware that we are in harm’s way. This requires a brain that can personally know that it existed in the past, that it is the entity that might be harmed in the present, and that it will cease to exist it the future. If other animals have conscious experiences, they cannot have the kinds of conscious experiences we have because they do not have the kinds of brains we have. This is not meant as a denial of animal consciousness; it is simply a statement about the fact that every species has a different brain. Nor is it a declaration about the wonders of the human brain, since we have done some wonderful, but also horrific, things with our brains. In fact, we are on the way to a climatic disaster that will not, as some suggest, destroy the Earth. But it will make it inhabitable for our kind, and other organisms with high energy demands. Bacteria have made it for billions of years and will likely be fine. The rest is up for grabs, and, in a very real sense, up to us.
Evolving Neural Networks
Evolution has shaped neural circuits in a very specific manner, slowly and aimlessly incorporating computational innovations that increased the chances to survive and reproduce of the newly born species. The discoveries done by the Evolutionary Developmental (Evo-Devo) biology field during the last decades have been crucial for our understanding of the gradual emergence of such innovations. In turn, Computational Neuroscience practitioners modeling the brain are becoming increasingly aware of the need to build models that incorporate these innovations to replicate the computational strategies used by the brain to solve a given task. The goal of this workshop is to bring together experts from Systems and Computational Neuroscience, Machine Learning and the Evo-Devo field to discuss if and how knowing the evolutionary history of neural circuits can help us understand the way the brain works, as well as the relative importance of learned VS innate neural mechanisms.