← Back

Experimental Design

Topic spotlight
TopicWorld Wide

experimental design

Discover seminars, jobs, and research tagged with experimental design across World Wide.
13 curated items10 Seminars3 Positions
Updated about 22 hours ago
13 items · experimental design
13 results
PositionMachine Learning

Samuel Kaski

Aalto University and University of Manchester
Helsinki, Finland and Manchester, UK
Dec 5, 2025

Thinking about the next position for your research career? I am hiring postdocs in my machine learning research group both in Helsinki, Finland and Manchester, UK. We develop new machine learning methods and study machine learning principles. Keywords include: probabilistic modelling, Bayesian inference, simulation-based inference, multi-agent RL and collaborative AI, sequential decision making and experimental design, active learning, human-in-the-loop learning and user modelling, privacy-preserving learning, Bayesian deep learning, generative models. We also solve problems of other fields with the methods – and use those problems as test benches when developing the methods. We have excellent collaborators in drug design, synthetic biology and biodesign, personalized medicine, cognitive science and human-computer interaction.

PositionMachine Learning

Samuel Kaski

Aalto University and University of Manchester
Helsinki, Finland and Manchester, UK
Dec 5, 2025

Thinking about the next position for your research career? I am hiring postdocs in my machine learning research group both in Helsinki, Finland and Manchester, UK. We develop new machine learning methods and study machine learning principles. Keywords include: probabilistic modelling, Bayesian inference, simulation-based inference, multi-agent RL and collaborative AI, sequential decision making and experimental design, active learning, human-in-the-loop learning and user modelling, privacy-preserving learning, Bayesian deep learning, generative models. We also solve problems of other fields with the methods – and use those problems as test benches when developing the methods. We have excellent collaborators in drug design, synthetic biology and biodesign, personalized medicine, cognitive science and human-computer interaction.

SeminarNeuroscience

Using Adversarial Collaboration to Harness Collective Intelligence

Lucia Melloni
Max Planck Institute for Empirical Aesthetics
Jan 24, 2024

There are many mysteries in the universe. One of the most significant, often considered the final frontier in science, is understanding how our subjective experience, or consciousness, emerges from the collective action of neurons in biological systems. While substantial progress has been made over the past decades, a unified and widely accepted explanation of the neural mechanisms underpinning consciousness remains elusive. The field is rife with theories that frequently provide contradictory explanations of the phenomenon. To accelerate progress, we have adopted a new model of science: adversarial collaboration in team science. Our goal is to test theories of consciousness in an adversarial setting. Adversarial collaboration offers a unique way to bolster creativity and rigor in scientific research by merging the expertise of teams with diverse viewpoints. Ideally, we aim to harness collective intelligence, embracing various perspectives, to expedite the uncovering of scientific truths. In this talk, I will highlight the effectiveness (and challenges) of this approach using selected case studies, showcasing its potential to counter biases, challenge traditional viewpoints, and foster innovative thought. Through the joint design of experiments, teams incorporate a competitive aspect, ensuring comprehensive exploration of problems. This method underscores the importance of structured conflict and diversity in propelling scientific advancement and innovation.

SeminarNeuroscience

Doubting the neurofeedback double-blind do participants have residual awareness of experimental purposes in neurofeedback studies?

Timo Kvamme
Aarhus University
Aug 7, 2023

Neurofeedback provides a feedback display which is linked with on-going brain activity and thus allows self-regulation of neural activity in specific brain regions associated with certain cognitive functions and is considered a promising tool for clinical interventions. Recent reviews of neurofeedback have stressed the importance of applying the “double-blind” experimental design where critically the patient is unaware of the neurofeedback treatment condition. An important question then becomes; is double-blind even possible? Or are subjects aware of the purposes of the neurofeedback experiment? – this question is related to the issue of how we assess awareness or the absence of awareness to certain information in human subjects. Fortunately, methods have been developed which employ neurofeedback implicitly, where the subject is claimed to have no awareness of experimental purposes when performing the neurofeedback. Implicit neurofeedback is intriguing and controversial because it runs counter to the first neurofeedback study, which showed a link between awareness of being in a certain brain state and control of the neurofeedback-derived brain activity. Claiming that humans are unaware of a specific type of mental content is a notoriously difficult endeavor. For instance, what was long held as wholly unconscious phenomena, such as dreams or subliminal perception, have been overturned by more sensitive measures which show that degrees of awareness can be detected. In this talk, I will discuss whether we will critically examine the claim that we can know for certain that a neurofeedback experiment was performed in an unconscious manner. I will present evidence that in certain neurofeedback experiments such as manipulations of attention, participants display residual degrees of awareness of experimental contingencies to alter their cognition.

SeminarNeuroscience

Maths, AI and Neuroscience Meeting Stockholm

Roshan Cools, Alain Destexhe, Upi Bhalla, Vijay Balasubramnian, Dinos Meletis, Richard Naud
Dec 14, 2022

To understand brain function and develop artificial general intelligence it has become abundantly clear that there should be a close interaction among Neuroscience, machine learning and mathematics. There is a general hope that understanding the brain function will provide us with more powerful machine learning algorithms. On the other hand advances in machine learning are now providing the much needed tools to not only analyse brain activity data but also to design better experiments to expose brain function. Both neuroscience and machine learning explicitly or implicitly deal with high dimensional data and systems. Mathematics can provide powerful new tools to understand and quantify the dynamics of biological and artificial systems as they generate behavior that may be perceived as intelligent.

SeminarOpen SourceRecording

Autopilot v0.4.0 - Distributing development of a distributed experimental framework

Jonny Saunders
University of Oregon
Sep 28, 2021

Autopilot is a Python framework for performing complex behavioral neuroscience experiments by coordinating a swarm of Raspberry Pis. It was designed to not only give researchers a tool that allows them to perform the hardware-intensive experiments necessary for the next generation of naturalistic neuroscientific observation, but also to make it easier for scientists to be good stewards of the human knowledge project. Specifically, we designed Autopilot as a framework that lets its users contribute their technical expertise to a cumulative library of hardware interfaces and experimental designs, and produce data that is clean at the time of acquisition to lower barriers to open scientific practices. As autopilot matures, we have been progressively making these aspirations a reality. Currently we are preparing the release of Autopilot v0.4.0, which will include a new plugin system and wiki that makes use of semantic web technology to make a technical and contextual knowledge repository. By combining human readable text and semantic annotations in a wiki that makes contribution as easy as possible, we intend to make a communal knowledge system that gives a mechanism for sharing the contextual technical knowledge that is always excluded from methods sections, but is nonetheless necessary to perform cutting-edge experiments. By integrating it with Autopilot, we hope to make a first of its kind system that allows researchers to fluidly blend technical knowledge and open source hardware designs with the software necessary to use them. Reciprocally, we also hope that this system will support a kind of deep provenance that makes abstract "custom apparatus" statements in methods sections obsolete, allowing the scientific community to losslessly and effortlessly trace a dataset back to the code and hardware designs needed to replicate it. I will describe the basic architecture of Autopilot, recent work on its community contribution ecosystem, and the vision for the future of its development.

SeminarOpen SourceRecording

Creating and controlling visual environments using BonVision

Aman Saleem
University College London
Sep 14, 2021

Real-time rendering of closed-loop visual environments is important for next-generation understanding of brain function and behaviour, but is often prohibitively difficult for non-experts to implement and is limited to few laboratories worldwide. We developed BonVision as an easy-to-use open-source software for the display of virtual or augmented reality, as well as standard visual stimuli. BonVision has been tested on humans and mice, and is capable of supporting new experimental designs in other animal models of vision. As the architecture is based on the open-source Bonsai graphical programming language, BonVision benefits from native integration with experimental hardware. BonVision therefore enables easy implementation of closed-loop experiments, including real-time interaction with deep neural networks, and communication with behavioural and physiological measurement and manipulation devices.

SeminarNeuroscience

Understanding neural dynamics in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Neural Dynamics & Computation Lab, Stanford University
Jun 16, 2021

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition. However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling. We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process. In particular we will discuss: (1) how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; (2) how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; (3) deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; (4) algorithmic approaches for simplifying deep network models of perception; (5) optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

SeminarNeuroscience

Learning under uncertainty in autism and anxiety

Timothy Sandhu
University of Cambridge, MRC CBU
Jun 15, 2021

Optimally interacting with a changeable and uncertain world requires estimating and representing uncertainty. Psychiatric and neurodevelopmental conditions such as anxiety and autism are characterized by an altered response to uncertainty. I will review the evidence for these phenomena from computational modelling, and outline the planned experiments from our lab to add further weight to these ideas. If time allows, I will present results from a control sample in a novel task interrogating a particular type of uncertainty and their associated transdiagnostic psychiatric traits.

SeminarNeuroscienceRecording

Consciousness, falsification and epistemic constraints

Johannes Kleiner
Munich Center for Mathematical Philosophy
Dec 10, 2020

Consciousness is a phenomenon unlike any other studied in natural science. Yet when building theories and designing experiments, we often proceed as if this were not the case. In this talk, I present two recent investigations of mine which explore the implications of consciousness' unique epistemic context for scientific theory building and experimental design. The first investigation is concerned with falsifications of theories of consciousness and identifies a rather deep problem in the usual scheme of testing theories. The second is an axiomatization and subsequent formalization of some of consciousness' more problematic epistemic features that allows to precisely quantify where the usual scientific methodology ceases to be applicable. For both cases, I indicate ways to resolve the problem.

SeminarNeuroscienceRecording

Theoretical and computational approaches to neuroscience with complex models in high dimensions across multiple timescales: from perception to motor control and learning

Surya Ganguli
Stanford University
Oct 15, 2020

Remarkable advances in experimental neuroscience now enable us to simultaneously observe the activity of many neurons, thereby providing an opportunity to understand how the moment by moment collective dynamics of the brain instantiates learning and cognition.  However, efficiently extracting such a conceptual understanding from large, high dimensional neural datasets requires concomitant advances in theoretically driven experimental design, data analysis, and neural circuit modeling.  We will discuss how the modern frameworks of high dimensional statistics and deep learning can aid us in this process.  In particular we will discuss: how unsupervised tensor component analysis and time warping can extract unbiased and interpretable descriptions of how rapid single trial circuit dynamics change slowly over many trials to mediate learning; how to tradeoff very different experimental resources, like numbers of recorded neurons and trials to accurately discover the structure of collective dynamics and information in the brain, even without spike sorting; deep learning models that accurately capture the retina’s response to natural scenes as well as its internal structure and function; algorithmic approaches for simplifying deep network models of perception; optimality approaches to explain cell-type diversity in the first steps of vision in the retina.

SeminarPhysics of LifeRecording

Physics of Behavior: Now that we can track (most) everything, what can we do with the data?

Workshop, Multiple Speakers
Emory University
Apr 29, 2020

We will organize the workshop around one question: “Now that we can track (most) everything, what can we do with the data?” Given the recent dramatic advances in technology, we now have behavioral data sets with orders of magnitude more accuracy, dimensionality, diversity, and size than we had even a few years ago. That being said, there is still little agreement as to what theoretical frameworks can inform our understanding of these data sets and suggest new experiments we can perform. We hope that after this workshop we’ll see a variety of new ideas and perhaps gain some inspiration. We have invited eight speakers, each studying different systems, scales, and topics, to provide 10 minute presentations focused on the above question, with another 10 minutes set aside for questions/discussions (moderated by the two of us). Although we naturally expect speakers to include aspects of their own work, we have encouraged all of them to think broadly and provocatively. We are also hoping to organize some breakout sessions after the talks so that we can have some more expanded discussions about topics arising during the meeting.