← Back

Families

Topic spotlight
TopicWorld Wide

families

Discover seminars, jobs, and research tagged with families across World Wide.
11 curated items11 Seminars
Updated over 1 year ago
11 items · families
11 results
SeminarNeuroscience

The multi-phase plasticity supporting winner effect

Dayu Lin
NYU Neuroscience Institute, New York, USA
May 14, 2024

Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.

SeminarNeuroscienceRecording

Theories of consciousness: beyond the first/higher-order distinction

Jonathan Birch
London School of Economics and Political Science
Sep 8, 2022

Theories of consciousness are commonly grouped into "first-order" and "higher-order" families. As conventional wisdom has it, many more animals are likely to be conscious if a first-order theory is correct. But two recent developments have put pressure on the first/higher-order distinction. One is the argument (from Shea and Frith) that an effective global workspace mechanism must involve a form of metacognition. The second is Lau's "perceptual reality monitoring" (PRM) theory, a member of the "higher-order" family in which conscious sensory content is not re-represented, only tagged with a temporal index and marked as reliable. I argue that the first/higher-order distinction has become so blurred that it is no longer particularly useful. Moreover, the conventional wisdom about animals should not be trusted. It could be, for example, that the distribution of PRM in the animal kingdom is wider than the distribution of global broadcasting.

SeminarNeuroscienceRecording

Retroviruses and retrotransposons interacting with the 3D genome in mouse and human brain

Schahram Akbarian
Icahn School of Medicine at Mt. Sinai
Jun 16, 2021

Repeat-rich sequence blocks are considered major determinants for 3D folding and structural genome organization in the cell nucleus in all higher eukaryotes. Here, we discuss how megabase-scale chromatin domain and chromosomal compartment organization in adult mouse cerebral cortex is linked, in highly cell type-specific fashion, to multiple retrotransposon superfamilies which comprise the vast majority of mobile DNA elements in the murine genome. We show that neuronal megadomain architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, unleashes proviruses from the Long Terminal Repeat (LTR) Endogenous Retrovirus family that exhibit strong tropism in mature neurons. Furthermore, we mapped, in the human brain, cell type-specific genomic integration patterns of the human pathogen and exogenous retrovirus, HIV, together with changes in genome organization and function of the HIV infected brain. Our work highlights the critical importance of chromosomal conformations and the ‘spatial genome’ for neuron- and glia-specific regulatory mechanisms and defenses aimed at exogenous and endogenous retrotransposons in the brain

SeminarNeuroscience

Global AND Scale-Free? Spontaneous cortical dynamics between functional networks and cortico-hippocampal communication

Federico Stella
Battaglia lab, Donders Institute
Jan 26, 2021

Recent advancements in anatomical and functional imaging emphasize the presence of whole-brain networks organized according to functional and connectivity gradients, but how such structure shapes activity propagation and memory processes still lacks asatisfactory model. We analyse the fine-grained spatiotemporal dynamics of spontaneous activity in the entire dorsal cortex. through simultaneous recordings of wide-field voltage sensitive dye transients (VS), cortical ECoG, and hippocampal LFP in anesthetized mice. Both VS and ECoG show cortical avalanches. When measuring avalanches from the VS signal, we find a major deviation of the size scaling from the power-law distribution predicted by the criticality hypothesis and well approximated by the results from the ECoG. Breaking from scale-invariance, avalanches can thus be grouped in two regimes. Small avalanches consists of a limited number of co-activation modes involving a sub-set of cortical networks (related to the Default Mode Network), while larger avalanches involve a substantial portion of the cortical surface and can be clustered into two families: one immediately preceded by Retrosplenial Cortex activation and mostly involving medial-posterior networks, the other initiated by Somatosensory Cortex and extending preferentially along the lateral-anterior region. Rather than only differing in terms of size, these two set of events appear to be associated with markedly different brain-wide dynamical states: they are accompaniedby a shift in the hippocampal LFP, from the ripple band (smaller) to the gamma band (larger avalanches), and correspond to opposite directionality in the cortex-to-hippocampus causal relationship. These results provide a concrete description of global cortical dynamics, and shows how cortex in its entirety is involved in bi-directional communication in the hippocampus even in sleep-like states.

SeminarPhysics of Life

“LIM Domain Proteins in Cell Mechanotransduction”

Margaret Gardel
University of Chicago
Oct 5, 2020

My lab studies the design principles of cytoskeletal materials the drive cellular morphogenesis, with a focus on contractile machinery in adherent cells. In addition to force generation, a key feature of these materials are distributed force sensors which allow for rapid assembly, adaptation, repair and disintegration. Here I will discuss our recent identification of 18 proteins from the zyxin, paxillin, Tes and Enigma families with mechanosensitive LIM (Lin11, Isl- 1 & Mec-3) domains. We developed a screen to assess the force-dependent localization of LIM domain-containing region (LCR) from ~30 genes to the actin cytoskeleton and identified features common to their force-sensitive localization. Through in vitro reconstitution, we found that the LCR binds directly to mechanically stressed actin filaments. Moreover, the LCR from the fission yeast protein paxillin-like 1 is also mechanosensitive, suggesting force-sensitivity is highly conserved. We speculate that the evolutionary emergence of contractile F-actin machinery coincided with, or required, proteins that could report on the stresses present there to maintain homeostasis of actively stressed networks.