Feedback Signals
feedback signals
Computational models of spinal locomotor circuitry
To effectively move in complex and changing environments, animals must control locomotor speed and gait, while precisely coordinating and adapting limb movements to the terrain. The underlying neuronal control is facilitated by circuits in the spinal cord, which integrate supraspinal commands and afferent feedback signals to produce coordinated rhythmic muscle activations necessary for stable locomotion. I will present a series of computational models investigating dynamics of central neuronal interactions as well as a neuromechanical model that integrates neuronal circuits with a model of the musculoskeletal system. These models closely reproduce speed-dependent gait expression and experimentally observed changes following manipulation of multiple classes of genetically-identified neuronal populations. I will discuss the utility of these models in providing experimentally testable predictions for future studies.
Assigning credit through the "other” connectome
Learning in neural networks requires assigning the right values to thousands to trillions or more of individual connections, so that the network as a whole produces the desired behavior. Neuroscientists have gained insights into this “credit assignment” problem through decades of experimental, modeling, and theoretical studies. This has suggested key roles for synaptic eligibility traces and top-down feedback signals, among other factors. Here we study the potential contribution of another type of signaling that is being revealed in greater and greater fidelity by ongoing molecular and genomics studies. This is the set of modulatory pathways local to a given circuit, which form an intriguing second type of connectome overlayed on top of synaptic connectivity. We will share ongoing modeling and theoretical work that explores the possible roles of this local modulatory connectome in network learning.
Behavioral Timescale Synaptic Plasticity (BTSP) for biologically plausible credit assignment across multiple layers via top-down gating of dendritic plasticity
A central problem in biological learning is how information about the outcome of a decision or behavior can be used to reliably guide learning across distributed neural circuits while obeying biological constraints. This “credit assignment” problem is commonly solved in artificial neural networks through supervised gradient descent and the backpropagation algorithm. In contrast, biological learning is typically modelled using unsupervised Hebbian learning rules. While these rules only use local information to update synaptic weights, and are sometimes combined with weight constraints to reflect a diversity of excitatory (only positive weights) and inhibitory (only negative weights) cell types, they do not prescribe a clear mechanism for how to coordinate learning across multiple layers and propagate error information accurately across the network. In recent years, several groups have drawn inspiration from the known dendritic non-linearities of pyramidal neurons to propose new learning rules and network architectures that enable biologically plausible multi-layer learning by processing error information in segregated dendrites. Meanwhile, recent experimental results from the hippocampus have revealed a new form of plasticity—Behavioral Timescale Synaptic Plasticity (BTSP)—in which large dendritic depolarizations rapidly reshape synaptic weights and stimulus selectivity with as little as a single stimulus presentation (“one-shot learning”). Here we explore the implications of this new learning rule through a biologically plausible implementation in a rate neuron network. We demonstrate that regulation of dendritic spiking and BTSP by top-down feedback signals can effectively coordinate plasticity across multiple network layers in a simple pattern recognition task. By analyzing hidden feature representations and weight trajectories during learning, we show the differences between networks trained with standard backpropagation, Hebbian learning rules, and BTSP.
Visual processing of feedforward and feedback signals in mouse thalamus
Traditionally, the dorsolateral geniculate nucleus (dLGN) of the thalamus has been considered a feedforward relay station for retinal signals to reach primary visual cortex. The local and long-range circuits of dLGN, however, suggest that this view is not correct. Indeed, besides the thalamo-cortical relay cells, dLGN contains local inhibitory interneurons, and receives not only feedforward input from the retina, but also massive direct and indirect feedback from primary visual cortex. Furthermore, it is one of the earliest processing stages in the visual system that integrates visual information with neuromodulatory signals.
The complexity of the ordinary – neural control of locomotion
Today, considerable information is available on the organization and operation of the neural networks that generate the motor output for animal locomotion, such as swimming, walking, or flying. In recent years, the question of which neural mechanisms are responsible for task-specific and flexible adaptations of locomotor patterns has gained increased attention in the field of motor control. I will report on advances we made with respect to this topic for walking in insects, i.e. the leg muscle control system of phasmids and fruit flies. I will present insights into the neural basis of speed control, heading, walking direction, and the role of ground contact in insect walking, both for local control and intersegmental coordination. For these changes in motor activity modifications in the processing of sensory feedback signals play a pivotal role, for instance for movement and load signals in heading and curve walking or for movement signals that contribute to intersegmental coordination. Our recent findings prompt future investigations that aim to elucidate the mechanisms by which descending and intersegmental signals interact with local networks in the generation of motor flexibility during walking in animals.
Neural mechanisms of proprioception and motor control in Drosophila
Animals rely on an internal sense of body position and movement to effectively control motor behaviour. This sense of proprioception is mediated by diverse populations of internal mechanosensory neurons distributed throughout the body. My lab is trying to understand how proprioceptive stimuli are detected by sensory neurons, integrated and transformed in central circuits, and used to guide motor output. We approach these questions using genetic tools, in vivo two-photon imaging, and patch-clamp electrophysiology in Drosophila. We recently found that the axons of fly leg proprioceptors are organized into distinct functional projections that contain topographic representations of specific kinematic features: one group of axons encodes tibia position, another encodes movement direction, and a third encodes bidirectional movement and vibration frequency. Whole-cell recordings from downstream neurons reveal that position, movement, and directional information remain segregated in central circuits. These feedback signals then converge upon motor neurons that control leg muscles during walking. Overall, our findings reveal how a low-dimensional stimulus – the angle of a single leg joint – is encoded by a diverse population of mechanosensory neurons. Specific proprioceptive parameters are initially processed by parallel pathways, but are ultimately integrated to influence motor output. This architecture may help to maximize information transmission, processing speed, and robustness, which are critical for feedback control of the limbs during adaptive locomotion.
Integration of corollary discharge and sensory feedback signals in somatosensory cortex
COSYNE 2025