← Back

Feedforward

Topic spotlight
TopicWorld Wide

feedforward connectivity

Discover seminars, jobs, and research tagged with feedforward connectivity across World Wide.
3 curated items3 Seminars
Updated almost 4 years ago
3 items · feedforward connectivity
3 results
SeminarNeuroscienceRecording

Wiring Minimization of Deep Neural Networks Reveal Conditions in which Multiple Visuotopic Areas Emerge

Dina Obeid
Harvard University
Dec 14, 2021

The visual system is characterized by multiple mirrored visuotopic maps, with each repetition corresponding to a different visual area. In this work we explore whether such visuotopic organization can emerge as a result of minimizing the total wire length between neurons connected in a deep hierarchical network. Our results show that networks with purely feedforward connectivity typically result in a single visuotopic map, and in certain cases no visuotopic map emerges. However, when we modify the network by introducing lateral connections, with sufficient lateral connectivity among neurons within layers, multiple visuotopic maps emerge, where some connectivity motifs yield mirrored alternations of visuotopic maps–a signature of biological visual system areas. These results demonstrate that different connectivity profiles have different emergent organizations under the minimum total wire length hypothesis, and highlight that characterizing the large-scale spatial organizing of tuning properties in a biological system might also provide insights into the underlying connectivity.

SeminarNeuroscienceRecording

Hebbian learning, its inference, and brain oscillation

Sukbin Lim
NYU Shanghai
Mar 23, 2021

Despite the recent success of deep learning in artificial intelligence, the lack of biological plausibility and labeled data in natural learning still poses a challenge in understanding biological learning. At the other extreme lies Hebbian learning, the simplest local and unsupervised one, yet considered to be computationally less efficient. In this talk, I would introduce a novel method to infer the form of Hebbian learning from in vivo data. Applying the method to the data obtained from the monkey inferior temporal cortex for the recognition task indicates how Hebbian learning changes the dynamic properties of the circuits and may promote brain oscillation. Notably, recent electrophysiological data observed in rodent V1 showed that the effect of visual experience on direction selectivity was similar to that observed in monkey data and provided strong validation of asymmetric changes of feedforward and recurrent synaptic strengths inferred from monkey data. This may suggest a general learning principle underlying the same computation, such as familiarity detection across different features represented in different brain regions.

SeminarNeuroscienceRecording

A geometric framework to predict structure from function in neural networks

James Fitzgerald
Janelia Research Campus
Feb 2, 2021

The structural connectivity matrix of synaptic weights between neurons is a critical determinant of overall network function. However, quantitative links between neural network structure and function are complex and subtle. For example, many networks can give rise to similar functional responses, and the same network can function differently depending on context. Whether certain patterns of synaptic connectivity are required to generate specific network-level computations is largely unknown. Here we introduce a geometric framework for identifying synaptic connections required by steady-state responses in recurrent networks of rectified-linear neurons. Assuming that the number of specified response patterns does not exceed the number of input synapses, we analytically calculate all feedforward and recurrent connectivity matrices that can generate the specified responses from the network inputs. We then use this analytical characterization to rigorously analyze the solution space geometry and derive certainty conditions guaranteeing a non-zero synapse between neurons.