← Back

Flagella

Topic spotlight
TopicWorld Wide

flagella

Discover seminars, jobs, and research tagged with flagella across World Wide.
12 curated items12 Seminars
Updated about 4 years ago
12 items · flagella
12 results
SeminarPhysics of LifeRecording

Mechano-adaptation in a large protein complex

Navish Wadhwa
Harvard
Nov 21, 2021

Macromolecular protein complexes perform essential biological functions across life forms. A fundamental, though yet unsolved question in biology is how the function of such complexes is regulated by intracellular or extracellular signals. For instance, we have little understanding of how forces affect multi-protein machines whose function is often mechanical in nature. We address this question by studying the bacterial flagellar motor, a large complex that powers swimming motility in many bacteria. This rotary motor autonomously adapts to changes in mechanical load by adding or removing force-generating ‘stator’ units that power rotation. In the bacterium Escherichia coli, up to 11 units drive the motor at high load while all the units are released at low load. We manipulate motor load using electrorotation, a technique in which a rapidly rotating electric field applies an external torque on the motor. This allows us to change motor load at will and measure the resulting stator dynamics at single-unit resolution. We found that the force generated by the stator units controls their unbinding, forming a feedback loop that leads to autoregulation of the assembly. We complemented our experiments with theoretical models that provide insight into the underlying molecular interactions. Torque-dependent remodeling takes place within seconds, making it a highly responsive control mechanism, one that is mediated by the mechano-chemical tuning of protein interactions.

SeminarPhysics of Life

Microalgal motility through day/night cycles

Otti Croze
Newcastle University
Jul 20, 2021

We have characterised the motility of the swimming microalga Chlamydomonas reinhardtii as a function of day/night cycles, to which the microalgal growth is entrained. Intriguingly, we find that the microalgae swim almost twice as fast during the night than during the day. I will connect this result with the bioenergetics of flagellar propulsion, discussing consequences for the distributions of cells in lab-based and environmental water columns.

SeminarPhysics of Life

Coordinated motion of active filaments on spherical surfaces

Eric Keaveny
Imperial College London
Jul 6, 2021

Filaments (slender, microscopic elastic bodies) are prevalent in biological and industrial settings. In the biological case, the filaments are often active, in that they are driven internally by motor proteins, with the prime examples being cilia and flagella. For cilia in particular, which can appear in dense arrays, their resulting motions are coupled through the surrounding fluid, as well as through surfaces to which they are attached. In this talk, I present numerical simulations exploring the coordinated motion of active filaments and how it depends on the driving force, density of filaments, as well as the attached surface. In particular, we find that when the surface is spherical, its topology introduces local defects in coordinated motion which can then feedback and alter the global state. This is particularly true when the surface is not held fixed and is free to move in the surrounding fluid. These simulations take advantage of a computational framework we developed for fully 3D filament motion that combines unit quaternions, implicit geometric time integration, quasi-Newton methods, and fast, matrix-free methods for hydrodynamic interactions and it will also be presented.

SeminarPhysics of LifeRecording

Swimming and crawling of Euglena gracilis: a tale with many twists

Antonio De Simone
SISSA
Jun 8, 2021

Euglena gracilis is an interesting unicellular protist, also because it can adopt different motility strategies: swimming by flagellar propulsion, or crawling thanks to large amplitude shape changes of the whole body (a behavior known as “metaboly”, or “amoeboid motion”). Swimming trajectories are helical. The are powered by the beating of a single emerging flagellum, which spans non-planar waveforms in the shape of a twisted lasso. Finally the harmoniously coordinated shape changes that make metaboly possible, reminiscent of peristaltic waves, arise form the relative sliding of its pellicle strips, resulting in twisted helical bundles. We will report on the most recent findings on these interconnected topics, for which helical shapes provide a striking fil rouge.

SeminarPhysics of LifeRecording

Sperm have got the bends

Meurig Gallagher
University of Birmingham
Apr 27, 2021

The journey of development begins with sperm swimming through the female reproductive tract en-route to the egg. In order to successfully complete this journey sperm must beat a single flagellum, propelling themselves through a wide range of fluids, from liquified semen to viscous cervical mucus. It is well-known that the beating tail is driven by an array of 9 microtubule doublets surrounding a central pair, with interconnecting dynein motors generating shear forces and driving elastic wave propagation. Despite this knowledge, the exact mechanism by which coordination of these motors drives oscillating waves along the flagellum remains unknown; hypothesised mechanisms include curvature control, sliding control, and geometric clutch. In this talk we will discuss the mechanisms of flagellar bending, and present a simple model of active curvature that is able to produce many of the various sperm waveforms that are seen experimentally, including those in low and high viscosity fluids and after a cell has ‘hyperactivated’ (a chemical process thought to be key for fertilization). We will show comparisons between these simulated waveforms and sperm that have been experimentally tracked, and discuss methods for fitting simulated mechanistic parameters to these real cells.

SeminarPhysics of LifeRecording

Frustrated Self-Assembly of Non-Euclidean Crystals of Nanoparticles

Xioaming Mao
University of Michigan
Apr 13, 2021

Self-organized complex structures in nature, e.g., viral capsids, hierarchical biopolymers, and bacterial flagella, offer efficiency, adaptability, robustness, and multi-functionality. Can we program the self-assembly of three-dimensional (3D) complex structures using simple building blocks, and reach similar or higher level of sophistication in engineered materials? Here we present an analytic theory for the self-assembly of polyhedral nanoparticles (NPs) based on their crystal structures in non-Euclidean space. We show that the unavoidable geometrical frustration of these particle shapes, combined with competing attractive and repulsive interparticle interactions, lead to controllable self-assembly of structures of complex order. Applying this theory to tetrahedral NPs, we find high-yield and enantiopure self-assembly of helicoidal ribbons, exhibiting qualitative agreement with experimental observations. We expect that this theory will offer a general framework for the self-assembly of simple polyhedral building blocks into rich complex morphologies with new material capabilities such as tunable optical activity, essential for multiple emerging technologies.

SeminarPhysics of LifeRecording

Exploring the evolution of motile curved bacteria using a regularized Stokeslet Boundary Element Method and Pareto optimality theory

Rudi Schuech
Tulane University
Feb 16, 2021

Bacteria exhibit a bewildering diversity of morphologies, but despite their impact on nearly all aspects of life, they are frequently classified into a few general categories, usually just “spheres” and “rods.” Curved-rod bacteria are one simple variation observed in many environments, particularly the ocean. However, why so many species have evolved this shape is unknown. We used a regularized Stokeslet Boundary Element Method to model the motility of flagellated, curved bacteria. We show that curvature can increase swimming efficiency, revealing a widely applicable selective advantage. Furthermore, we show that the distribution of cell lengths and curvatures observed across bacteria in nature is predicted by evolutionary trade-offs between three tasks influenced by shape: efficient swimming, the ability to detect chemical gradients, and reduced cost of cell construction. We therefore reveal shape as an important component of microbial fitness.

SeminarPhysics of LifeRecording

Motility-dependent pathogenicity of a spirochetal bacterium

Shuichi Nakamura
Tohoku University
Oct 13, 2020

Motility is a crucial virulence factor for many species of bacteria, but it is not fully understood how bacterial motility is practically involved in pathogenicity. This time I will give a talk on the association of motility with pathogenicity in the zoonotic spirochete bacterium Leptospira. Recently, we measured swimming force of individual leptospires using optical tweezers and found that they can generate ~30 times of the swimming force of E. coli. We also observed that leptospires increase the reversal frequency of swimming at the gel-liquid interface, resembling host dermis exposed to contaminated water (Abe et al., 2020, Sci Rep). These could be involved in percutaneous infection of the spirochete. We have shown that Leptospira not only swims in liquid but also moves over solid surfaces (Tahara et al., 2018, Sci Adv). We quantified the surface motility called “crawling” on cultured kidney tissues from various mammals, showing that pathogenic leptospires crawl over the tissue surfaces more persistently that non-pathogenic ones (Xu et al., 2020, Front Microbiol). I will discuss the spirochete motility related to pathogenicity from the biophysical viewpoint.

SeminarPhysics of LifeRecording

Synthetic swimmers: microorganism swimming without microorganisms

Roberto Zenit
Brown University
Sep 1, 2020

The effect of non Newtonian liquid rheology on the swimming performance of microorganisms is still poorly understood, despite numerous recent studies. In our effort to clarify some aspects of this problem, we have developed a series of magnetic synthetic swimmers that self-propel immersed in a fluid by emulating the swimming strategy of flagellated microorganisms. With these devices, it is possible to control some aspects of the motion with the objective to isolate specific effects. In this talk, recent results on the effects of shear-thinning viscosity and viscoelasticity on the motion of helical swimmers will presented and discussed. Also, a number of other new uses of the synthetic swimmers will be presented including swimming across gradients, swimming in sand, interactions and rheometry.

SeminarPhysics of Life

Spinners, not swimmers: how sperm flagella fooled us for 350 years - now in 3D!

Hermes Gadelha
University of Bristol
Jul 28, 2020

In the 17th century, Antonie van Leeuwenhoek used one of the earliest microscopes to see how sperm swim. He described the sperm as a “living animalcule” with a “tail, which, when swimming, lashes with a snakelike movement, like eels in water”. Strikingly, this perception of how sperm moves has not changed since. Indeed, anyone today with a modern microscope would make the same observation: sperm swim forward by wiggling their tail symmetrically side-to-side. Our new research using 3D microscopy shows that we have all been victims of a sperm deception, an illusion. Only now we can see that for 350 years we have been wrong about how sperm actually swims.