Flight
flight
Modelling the fruit fly brain and body
Through recent advances in microscopy, we now have an unprecedented view of the brain and body of the fruit fly Drosophila melanogaster. We now know the connectivity at single neuron resolution across the whole brain. How do we translate these new measurements into a deeper understanding of how the brain processes sensory information and produces behavior? I will describe two computational efforts to model the brain and the body of the fruit fly. First, I will describe a new modeling method which makes highly accurate predictions of neural activity in the fly visual system as measured in the living brain, using only measurements of its connectivity from a dead brain [1], joint work with Jakob Macke. Second, I will describe a whole body physics simulation of the fruit fly which can accurately reproduce its locomotion behaviors, both flight and walking [2], joint work with Google DeepMind.
The multi-phase plasticity supporting winner effect
Aggression is an innate behavior across animal species. It is essential for competing for food, defending territory, securing mates, and protecting families and oneself. Since initiating an attack requires no explicit learning, the neural circuit underlying aggression is believed to be genetically and developmentally hardwired. Despite being innate, aggression is highly plastic. It is influenced by a wide variety of experiences, particularly winning and losing previous encounters. Numerous studies have shown that winning leads to an increased tendency to fight while losing leads to flight in future encounters. In the talk, I will present our recent findings regarding the neural mechanisms underlying the behavioral changes caused by winning.
What the fly’s eye tells the fly’s brain…and beyond
Fly Escape Behaviors: Flexible and Modular We have identified a set of escape maneuvers performed by a fly when confronted by a looming object. These escape responses can be divided into distinct behavioral modules. Some of the modules are very stereotyped, as when the fly rapidly extends its middle legs to jump off the ground. Other modules are more complex and require the fly to combine information about both the location of the threat and its own body posture. In response to an approaching object, a fly chooses some varying subset of these behaviors to perform. We would like to understand the neural process by which a fly chooses when to perform a given escape behavior. Beyond an appealing set of behaviors, this system has two other distinct advantages for probing neural circuitry. First, the fly will perform escape behaviors even when tethered such that its head is fixed and neural activity can be imaged or monitored using electrophysiology. Second, using Drosophila as an experimental animal makes available a rich suite of genetic tools to activate, silence, or image small numbers of cells potentially involved in the behaviors. Neural Circuits for Escape Until recently, visually induced escape responses have been considered a hardwired reflex in Drosophila. White-eyed flies with deficient visual pigment will perform a stereotyped middle-leg jump in response to a light-off stimulus, and this reflexive response is known to be coordinated by the well-studied giant fiber (GF) pathway. The GFs are a pair of electrically connected, large-diameter interneurons that traverse the cervical connective. A single GF spike results in a stereotyped pattern of muscle potentials on both sides of the body that extends the fly's middle pair of legs and starts the flight motor. Recently, we have found that a fly escaping a looming object displays many more behaviors than just leg extension. Most of these behaviors could not possibly be coordinated by the known anatomy of the GF pathway. Response to a looming threat thus appears to involve activation of numerous different neural pathways, which the fly may decide if and when to employ. Our goal is to identify the descending pathways involved in coordinating these escape behaviors as well as the central brain circuits, if any, that govern their activation. Automated Single-Fly Screening We have developed a new kind of high-throughput genetic screen to automatically capture fly escape sequences and quantify individual behaviors. We use this system to perform a high-throughput genetic silencing screen to identify cell types of interest. Automation permits analysis at the level of individual fly movements, while retaining the capacity to screen through thousands of GAL4 promoter lines. Single-fly behavioral analysis is essential to detect more subtle changes in behavior during the silencing screen, and thus to identify more specific components of the contributing circuits than previously possible when screening populations of flies. Our goal is to identify candidate neurons involved in coordination and choice of escape behaviors. Measuring Neural Activity During Behavior We use whole-cell patch-clamp electrophysiology to determine the functional roles of any identified candidate neurons. Flies perform escape behaviors even when their head and thorax are immobilized for physiological recording. This allows us to link a neuron's responses directly to an action.
The impact of spaceflight on sleep and circadian rhythms
What happens to human sleep and circadian rhythms in space? There are many challenges that affect sleep in space, including unusual patterns of light exposure and the influence of microgravity. This talk will review the causes and consequences of sleep loss and circadian misalignment during spaceflight and will discuss how missions to the Moon and Mars will be different than missions to the International Space Station.
Sensing in Insect Wings
Ali Weber (University of Washington, USA) uses the the hawkmoth as a model system, to investigate how information from a small number of mechanoreceptors on the wings are used in flight control. She employs a combination of experimental and computational techniques to study how these sensors respond during flight and how one might optimally array a set of these sensors to best provide feedback during flight.
An optimal population code for global motion estimation in local direction-selective cells
Neuronal computations are matched to optimally encode the sensory information that is available and relevant for the animal. However, the physical distribution of sensory information is often shaped by the animal’s own behavior. One prominent example is the encoding of optic flow fields that are generated during self-motion of the animal and will therefore depend on the type of locomotion. How evolution has matched computational resources to the behavioral constraints of an animal is not known. Here we use in vivo two photon imaging to record from a population of >3.500 local-direction selective cells. Our data show that the local direction-selective T4/T5 neurons in Drosophila form a population code that is matched to represent optic flow fields generated during translational and rotational self-motion of the fly. This coding principle for optic flow is reminiscent to the population code of local direction-selective ganglion cells in the mouse retina, where four direction-selective ganglion cells encode four different axes of self-motion encountered during walking (Sabbah et al., 2017). However, in flies we find six different subtypes of T4 and T5 cells that, at the population level, represent six axes of self-motion of the fly. The four uniformly tuned T4/T5 subtypes described previously represent a local snapshot (Maisak et al. 2013). The encoding of six types of optic flow in the fly as compared to four types of optic flow in mice might be matched to the high degrees of freedom encountered during flight. Thus, a population code for optic flow appears to be a general coding principle of visual systems, resulting from convergent evolution, but matching the individual ethological constraints of the animal.
The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium
Join the Department of Bioengineering on the 26th May at 9:00am for The 2021 Annual Bioengineering Lecture + Bioinspired Guidance, Navigation and Control Symposium. This year’s lecture speaker will be distinguished bioengineer and neuroscientist Professor Mandyam V. Srinivasan AM FRS, from the University of Queensland. Professor Srinivasan studies visual systems, particularly those of bees and birds. His research has revealed how flying insects negotiate narrow gaps, regulate the height and speed of flight, estimate distance flown, and orchestrate smooth landings. Apart from enhancing fundamental knowledge, these findings are leading to novel, biologically inspired approaches to the design of guidance systems for unmanned aerial vehicles with applications in the areas of surveillance, security and planetary exploration. Following Professor Srinivasan’s lecture will be the Bioinspired GNC Mini Symposium with guest speakers from Google Deepmind, Imperial College London, the University of Würzburg and the University of Konstanz giving talks on their research into autonomous robot navigation, neural mechanisms of compass orientation in insects and computational approaches to motor control.
Lessons from the cockpit of a fly
Flies represent nearly 10% of all species described by science and are arguably unmatched among flying organisms in their aerial agility. The flight trajectory of flies often consists of crisp straight flight segments interspersed with rapid changes in course called body saccades. Recent advances in genetic tools have made it possible to explore the neurobiological circuitry underlying these two distinct modes of fly flight behavior.
Australian Bogong moths use a true stellar compass for long-distance navigation at night
Each spring, billions of Bogong moths escape hot conditions in different regions of southeast Australia by migrating over 1000 km to a limited number of cool caves in the Australian Alps, historically used for aestivating over the summer. At the beginning of autumn the same individuals make a return migration to their breeding grounds to reproduce and die. To steer migration Bogong moths sense the Earth’s magnetic field and correlate its directional information with visual cues. In this presentation, we will show that a critically important visual cue is the distribution of starlight within the austral night sky. By tethering spring and autumn migratory moths in a flight simulator, we found that under natural dorsally-projected night skies, and in a nulled magnetic field (disabling the magnetic sense), moths flew in their seasonally appropriate migratory directions, turning in the opposite direction when the night sky was rotated 180°. Visual interneurons in the moth’s optic lobe and central brain responded vigorously to identical sky rotations. Migrating Bogong moths thus use the starry night sky as a true compass to distinguish geographic cardinal directions, the first invertebrate known to do so. These stellar cues are likely reinforced by the Earth’s magnetic field to create a robust compass mechanism for long-distance nocturnal navigation.
State-dependent egocentric and allocentric heading representation in the monarch butterfly sun compass
For spatial orientation, heading information can be processed in two different frames of reference, a self-centered egocentric or a viewpoint allocentric frame of reference. Using the most efficient frame of reference is in particular important if an animal migrates over large distances, as it the case for the monarch butterfly (Danaus plexippus). These butterflies employ a sun compass to travel over more than 4,000 kilometers to their destination in central Mexico. We developed tetrode recordings from the heading-direction network of tethered flying monarch butterflies that were allowed to orient with respect to a sun stimulus. We show that the neurons switch their frame of reference depending on the animal’s locomotion state. In quiescence, the heading-direction cells encode a sun bearing in an egocentric reference frame, while during active flight, the heading-direction is encoded within an allocentric reference frame. By switching to an allocentric frame of reference during flight, monarch butterflies convert the sun to a global compass cue for long-distance navigation, an ideal strategy for maintaining a migratory heading.
Safety in numbers: how animals use motion of others as threat or safety cues
Our work concerns the general problem of adaptive behaviour in response to predatory threats, and of the neural mechanisms underlying a choice between strategies. When faced with a threat, an animal must decide whether to freeze, reducing its chances of being noticed, or to flee to the safety of a refuge. Animals from fish to primates choose between these two alternatives when confronted by an attacking predator, a choice that largely depends on the context in which the threat occurs. Recent work has made strides identifying the pre-motor circuits, and their inputs, which control freezing behaviour in rodents, but how contextual information is integrated to guide this choice is still far from understood. The social environment is a potent contextual modulator of defensive behaviours of animals in a group. Indeed, anti-predation strategies are believed to be a major driving force for the evolution of sociality. We recently found that fruit flies in response to visual looming stimuli, simulating a large object on collision course, make rapid freeze/flee choices accompanied by lasting changes in the fly’s internal state, reflected in altered cardiac activity. In this talk, I will discuss our work on how flies process contextual cues, focusing on the social environment, to guide their behavioural response to a threat. We have identified a social safety cue, resumption of activity, and visual projection neurons involved in processing this cue. Given the knowledge regarding sensory detection of looming threats and descending neuron involved in the expression of freezing, we are now in a unique position to understand how information about a threat is integrated with cues from the social environment to guide the choice of whether to freeze.
An evolutionarily conserved hindwing circuit mediates Drosophila flight control
My research at the interface of neurobiology, biomechanics, and behavior seeks to understand how the timing precision of sensory input structures locomotor output. My lab studies the flight behavior of the fruit fly, Drosophila melanogaster, combining powerful genetic tools available for labeling and manipulating neural circuits with cutting-edge imaging in awake, behaving animals. This work has the potential to fundamentally reshape understanding of the evolution of insect flight, as well as highlight the tremendous importance of timing in the context of locomotion. Timing is crucial to the nervous system. The ability to rapidly detect and process subtle disturbances in the environment determines whether an animal can attain its next meal or successfully navigate complex, unpredictable terrain. While previous work on various animals has made tremendous strides uncovering the specialized neural circuits used to resolve timing differences with sub-microsecond resolution, it has focused on the detection of timing differences in sensory systems. Understanding of how the timing of motor output is structured by precise sensory input remains poor. My research focuses on an organ unique to fruit flies, called the haltere, that serves as a bridge for detecting and acting on subtle timing differences, helping flies execute rapid maneuvers. Understanding how this relatively simple insect canperform such impressive aerial feats demands an integrative approach that combines physics, muscle mechanics, neuroscience, and behavior. This unique, powerful approach will reveal the general principles that govern sensorimotor processing.
An insect vision-based flight control model with a plastic efference copy
COSYNE 2022
An insect vision-based flight control model with a plastic efference copy
COSYNE 2022
Exploring a neural circuit for estimating ambient wind direction in flight
COSYNE 2023
A computational map of flight control in Drosophila melanogaster
COSYNE 2025