← Back

Fmri Analysis

Topic spotlight
TopicWorld Wide

fMRI analysis

Discover seminars, jobs, and research tagged with fMRI analysis across World Wide.
4 curated items4 Seminars
Updated 4 months ago
4 items · fMRI analysis
4 results
SeminarNeuroscience

OpenNeuro FitLins GLM: An Accessible, Semi-Automated Pipeline for OpenNeuro Task fMRI Analysis

Michael Demidenko
Stanford University
Jul 31, 2025

In this talk, I will discuss the OpenNeuro Fitlins GLM package and provide an illustration of the analytic workflow. OpenNeuro FitLins GLM is a semi-automated pipeline that reduces barriers to analyzing task-based fMRI data from OpenNeuro's 600+ task datasets. Created for psychology, psychiatry and cognitive neuroscience researchers without extensive computational expertise, this tool automates what is largely a manual process and compilation of in-house scripts for data retrieval, validation, quality control, statistical modeling and reporting that, in some cases, may require weeks of effort. The workflow abides by open-science practices, enhancing reproducibility and incorporates community feedback for model improvement. The pipeline integrates BIDS-compliant datasets and fMRIPrep preprocessed derivatives, and dynamically creates BIDS Statistical Model specifications (with Fitlins) to perform common mass univariate [GLM] analyses. To enhance and standardize reporting, it generates comprehensive reports which includes design matrices, statistical maps and COBIDAS-aligned reporting that is fully reproducible from the model specifications and derivatives. OpenNeuro Fitlins GLM has been tested on over 30 datasets spanning 50+ unique fMRI tasks (e.g., working memory, social processing, emotion regulation, decision-making, motor paradigms), reducing analysis times from weeks to hours when using high-performance computers, thereby enabling researchers to conduct robust single-study, meta- and mega-analyses of task fMRI data with significantly improved accessibility, standardized reporting and reproducibility.

SeminarNeuroscience

Current and future trends in neuroimaging

Andy Jahn
fMRI Lab, University of Michigan
Dec 6, 2023

With the advent of several different fMRI analysis tools and packages outside of the established ones (i.e., SPM, AFNI, and FSL), today's researcher may wonder what the best practices are for fMRI analysis. This talk will discuss some of the recent trends in neuroimaging, including design optimization and power analysis, standardized analysis pipelines such as fMRIPrep, and an overview of current recommendations for how to present neuroimaging results. Along the way we will discuss the balance between Type I and Type II errors with different correction mechanisms (e.g., Threshold-Free Cluster Enhancement and Equitable Thresholding and Clustering), as well as considerations for working with large open-access databases.

SeminarNeuroscience

Trends in NeuroAI - SwiFT: Swin 4D fMRI Transformer

Junbeom Kwon
Nov 20, 2023

Trends in NeuroAI is a reading group hosted by the MedARC Neuroimaging & AI lab (https://medarc.ai/fmri). Title: SwiFT: Swin 4D fMRI Transformer Abstract: Modeling spatiotemporal brain dynamics from high-dimensional data, such as functional Magnetic Resonance Imaging (fMRI), is a formidable task in neuroscience. Existing approaches for fMRI analysis utilize hand-crafted features, but the process of feature extraction risks losing essential information in fMRI scans. To address this challenge, we present SwiFT (Swin 4D fMRI Transformer), a Swin Transformer architecture that can learn brain dynamics directly from fMRI volumes in a memory and computation-efficient manner. SwiFT achieves this by implementing a 4D window multi-head self-attention mechanism and absolute positional embeddings. We evaluate SwiFT using multiple large-scale resting-state fMRI datasets, including the Human Connectome Project (HCP), Adolescent Brain Cognitive Development (ABCD), and UK Biobank (UKB) datasets, to predict sex, age, and cognitive intelligence. Our experimental outcomes reveal that SwiFT consistently outperforms recent state-of-the-art models. Furthermore, by leveraging its end-to-end learning capability, we show that contrastive loss-based self-supervised pre-training of SwiFT can enhance performance on downstream tasks. Additionally, we employ an explainable AI method to identify the brain regions associated with sex classification. To our knowledge, SwiFT is the first Swin Transformer architecture to process dimensional spatiotemporal brain functional data in an end-to-end fashion. Our work holds substantial potential in facilitating scalable learning of functional brain imaging in neuroscience research by reducing the hurdles associated with applying Transformer models to high-dimensional fMRI. Speaker: Junbeom Kwon is a research associate working in Prof. Jiook Cha’s lab at Seoul National University. Paper link: https://arxiv.org/abs/2307.05916

SeminarNeuroscienceRecording

Distributed replay in the human brain, and how to find it

Nicolas Schuck
MPI Berlin
Jul 28, 2020

I will present work on a novel fMRI analysis method that allows us to investigate sequential reactivation in the hippocampus. Our method focuses on analysing the time courses of probabilistic multivariate classifiers and allows us to infer the presence and frequency of fast sequential reactivation events. Using a paradigm in which we controlled the speed of sequential visually elicited activations, we validated the method in visual cortex for event sequences with only 32 ms between items. We show that detectability remains possible if low signal-to-noise ratio and when sequence events occur at unknown times. In a preliminary analysis, we show that even the exposure to our visual paradigm elicits reactivations in visual cortex at rest following the task. I then present work in which we tested how representations influence replay by asking whether transitions between task-state representations are reactivated at rest during hippocampal replay events. Participants learned to make decisions about ambiguous stimuli that depended on past events and attentionally filtered stimulus processing. FMRI signals during rest periods following this task indicated sequential reactivation of task states. These results indicate that adaptive task state representations are computed and replayed at different cortical sites. In combination with other methods, fMRI may allow us to unravel this coordinated nature of replay.