← Back

Food Scarcity

Topic spotlight
TopicWorld Wide

food scarcity

Discover seminars, jobs, and research tagged with food scarcity across World Wide.
4 curated items3 Seminars1 ePoster
Updated almost 4 years ago
4 items · food scarcity
4 results
SeminarNeuroscienceRecording

How does the metabolically-expensive mammalian brain adapt to food scarcity?

Zahid Padamsey
Rochefort lab, University of Edinburgh
Feb 22, 2022

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. I addressed this in the visual cortex of awake mice using whole-cell recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. I found that food restriction reduced synaptic ATP usage by 29% through a decrease in AMPA receptor conductance. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscienceRecording

Neocortex saves energy by reducing coding precision during food scarcity

Nathalie Rochefort
University of Edinburgh
Sep 26, 2021

Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy usage are regulated during food scarcity. We addressed this in the visual cortex of awake mice using whole-cell patch clamp recordings and two-photon imaging to monitor layer 2/3 neuronal activity and ATP usage. We found that food restriction resulted in energy savings through a decrease in AMPA receptor conductance, reducing synaptic ATP usage by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting membrane potential. Consequently, neurons spiked at similar rates as controls, but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost since it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening in orientation tuning and impaired fine visual discrimination. These findings reveal novel mechanisms that dynamically regulate energy usage and coding precision in neocortex.

SeminarNeuroscience

Neocortex saves energy by reducing coding precision during food scarcity

Nathalie Rochefort
University of Edinburgh, UK
Sep 12, 2021
ePoster

Emergent small-group foraging under variable group size, food scarcity, and sensory capabilities

Zhouyang Lu, Satpreet H Singh, Sonja Johnson-Yu, Aaron Walsman, Kanaka Rajan

COSYNE 2025