← Back

Foraging

Topic spotlight
TopicWorld Wide

foraging

Discover seminars, jobs, and research tagged with foraging across World Wide.
59 curated items40 Seminars18 ePosters1 Position
Updated 1 day ago
59 items · foraging
59 results
Position

Prof Mark Humphries

University of Nottingham
Nottingham
Dec 5, 2025

The Humphries’ lab at the University of Nottingham is seeking a postdoc to study the neural basis of foraging, in collaboration with the groups of Matthew Apps (Birmingham) and Nathan Lepora (Bristol). Whether choosing to leave one shop for another, switching TV programs, or seeking berries to eat, humans and other animals make innumerable stay-or-leave decisions, but how we make them is not well understood. The goal of this project is to develop new computational accounts of stay-or-leave decisions, and use them to test hypotheses for how humans, primates, and rodents learn and make these decisions. The work will draw on and develop new reinforcement learning and accumulation (e.g. diffusion) models of decision-making. The Humphries’ group researches fundamental insights into how the joint activity of neurons encodes actions in the world (https://www.humphries-lab.org). This post will join our developing research program into how humans and other animals learn to make the right decisions (e.g. https://doi.org/10.1101/2022.08.30.505807).

SeminarNeuroscienceRecording

In search of the unknown: Artificial intelligence and foraging

Nathan Wispinski & Paulo Bruno Serafim
University of Alberta & Gran Sasso Science Institute
Jul 10, 2023
SeminarNeuroscienceRecording

Pollination: A Curious Case of Cross-Kingdom Cooperation

Anna Stöckl & Michael Harrap
University of Konstanz & University of Oxford
May 22, 2023
SeminarNeuroscienceRecording

Human foraging: Insights into decision-making

Matthew Apps & Aaron Bornstein
University of Birmingham & University of California, Irvine
May 8, 2023
SeminarNeuroscienceRecording

Under the sea: Challenges and Solutions in Aquatic Foraging

Eleanor Caves & Vivienne Foroughirad
University of California, Santa Barbara & Georgetown University
Apr 17, 2023
SeminarNeuroscienceRecording

All for one? Consequences and challenges of group foraging

Sasha Dall & Damien Farine
University of Exeter & Max Planck Institute of Animal Behavior
Mar 20, 2023
SeminarNeuroscienceRecording

Central place foraging: how insects anchor spatial information

Barbara Webb
University of Edinburgh
Mar 13, 2023

Many insect species maintain a nest around which their foraging behaviour is centered, and can use path integration to maintain an accurate estimate of their distance and direction (a vector) to their nest. Some species, such as bees and ants, can also store the vector information for multiple salient locations in the world, such as food sources, in a common coordinate system. They can also use remembered views of the terrain around salient locations or along travelled routes to guide return. Recent modelling of these abilities shows convergence on a small set of algorithms and assumptions that appear sufficient to account for a wide range of behavioural data, and which can be mapped to specific insect brain circuits. Notably, this does not include any significant topological knowledge: the insect does not need to recover the information (implicit in their vector memory) about the relationships between salient places; nor to maintain any connectedness or ordering information between view memories; nor to form any associations between views and vectors. However, there remains some experimental evidence not fully explained by these algorithms that may point towards the existence of a more complex or integrated mental map in insects.

SeminarPsychology

Adaptation via innovation in the animal kingdom

Kata Horváth
Eötvös Loránd University & Lund University
Nov 23, 2022

Over the course of evolution, the human race has achieved a number of remarkable innovations, that have enabled us to adapt to and benefit from the environment ever more effectively. The ongoing environmental threats and health disasters of our world have now made it crucial to understand the cognitive mechanisms behind innovative behaviours. In my talk, I will present two research projects with examples of innovation-based behavioural adaptation from the taxonomic kingdom of animals, serving as a comparative psychological model for mapping the evolution of innovation. The first project focuses on the challenge of overcoming physical disability. In this study, we investigated an injured kea (Nestor notabilis) that exhibits an efficient, intentional, and innovative tool-use behaviour to compensate his disability, showing evidence for innovation-based adaptation to a physical disability in a non-human species. The second project focuses on the evolution of fire use from a cognitive perspective. Fire has been one of the most dominant ecological forces in human evolution; however, it is still unknown what capabilities and environmental factors could have led to the emergence of fire use. In the core study of this project, we investigated a captive population of Japanese macaques (Macaca fuscata) that has been regularly exposed to campfires during the cold winter months for over 60 years. Our results suggest that macaques are able to take advantage of the positive effects of fire while avoiding the dangers of flames and hot ashes, and exhibit calm behaviour around the bonfire. In addition, I will present a research proposal targeting the foraging behaviour of predatory birds in parts of Australia frequently affected by bushfires. Anecdotal reports suggest that some birds use burning sticks to spread the flames, a behaviour that has not been scientifically observed and evaluated. In summary, the two projects explore innovative behaviours along three different species groups, three different habitats, and three different ecological drivers, providing insights into the cognitive and behavioural mechanisms of adaptation through innovation.

SeminarNeuroscienceRecording

Neural circuits for vector processing in the insect brain

Barbara Webb
University of Edinburgh
Nov 22, 2022

Several species of insects have been observed to perform accurate path integration, constantly updating a vector memory of their location relative to a starting position, which they can use to take a direct return path. Foraging insects such as bees and ants are also able to store and recall the vectors to return to food locations, and to take novel shortcuts between these locations. Other insects, such as dung beetles, are observed to integrate multimodal directional cues in a manner well described by vector addition. All these processes appear to be functions of the Central Complex, a highly conserved and strongly structured circuit in the insect brain. Modelling this circuit, at the single neuron level, suggests it has general capabilities for vector encoding, vector memory, vector addition and vector rotation that can support a wide range of directed and navigational behaviours.

SeminarNeuroscience

Hunger state-dependent modulation of decision-making in larval Drosophila

Katrin Vogt
University of Konstanz
Oct 24, 2022

It is critical for all animals to make appropriate, but also flexible, foraging decisions, especially when facing starvation. Sensing olfactory information is essential to evaluate food quality before ingestion. Previously, we found that <i>Drosophila</i> larvae switch their response to certain odors from aversion to attraction when food deprived. The neural mechanism underlying this switch in behavior involves serotonergic modulation and reconfiguration of odor processing in the early olfactory sensory system. We now investigate if a change in hunger state also influences other behavioral decisions. Since it had been shown that fly larvae can perform cannibalism, we investigate the effect of food deprivation on feeding on dead conspecifics. We find that fed fly larvae rarely use dead conspecifics as a food source. However, food deprivation largely enhances this behavior. We will now also investigate the underlying neural mechanisms that mediate this enhancement and compare it to the already described mechanism for a switch in olfactory choice behavior. Generally, this flexibility in foraging behavior enables the larva to explore a broader range of stimuli and to expand their feeding choices to overcome starvation.

SeminarNeuroscienceRecording

Foraging for the future: Food caching in squirrels and birds

Lucia Jacobs & Hannah Payne
University of California Berkeley, Columbia University
May 16, 2022
SeminarNeuroscienceRecording

Alternative Applications of Foraging Theory

David Barack & Thomas Hills
University of Pennsylvania, University of Warwick
May 9, 2022
SeminarNeuroscienceRecording

This is the way: Sensory guidance in foraging

Cindy Poo & Pauline Fleischmann
Champalimaud Center for the Unknown & University of Würzburg
Apr 18, 2022
SeminarNeuroscienceRecording

On the Hunt: Ingenious Foraging Strategies in Bats & Spiders

Holger Goerlitz & Abel Corver
Max Planck Institute for Biological Intelligence & Johns Hopkins
Apr 11, 2022
SeminarNeuroscienceRecording

The ubiquity of opportunity cost: Foraging and beyond

Nathaniel Daw
Princeton University
Mar 29, 2022

A key insight from the foraging literature is the importance of assessing the overall environmental quality — via global reward rate or similar measures, which capture the opportunity cost of time and can guide behavioral allocation toward relatively richer options. Meanwhile, the majority of research in decision neuroscience and computational psychiatry has focused instead on how choices are guided by much more local, event-locked evaluations: of individual situations, actions, or outcomes. I review a combination of research and theoretical speculation from my lab and others that emphasizes the role of foraging's average rewards and opportunity costs in a much larger range of decision problems, including risk, time discounting, vigor, cognitive control, and deliberation. The broad range of behaviors affected by this type of evaluation gives a new theoretical perspective on the effects of stress and autonomic mobilization, and on mood and the broad range of symptoms associated with mood disorders.

SeminarNeuroscienceRecording

Connecting structure and function in early visual circuits

Rudy Behnia
Columbia Zuckerman Institute
Mar 13, 2022

How does the brain interpret signals from the outside world? Walking through a park, you might take for granted the ease with which you can understand what you see. Rather than seeing a series of still snapshots, you are able to see simple, fluid movement — of dogs running, squirrels foraging, or kids playing basketball. You can track their paths and know where they are headed without much thought. “How does this process take place?” asks Rudy Behnia, PhD, a principal investigator at Columbia’s Mortimer B. Zuckerman Mind Brain Behavior Institute. “For most of us, it’s hard to imagine a world where we can’t see motion, shapes, and color; where we can’t have a representation of the physical world in our head.” And yet this representation does not happen automatically — our brain has no direct connection with the outside world. Instead, it interprets information taken in by our senses. Dr. Behnia is studying how the brain builds these representations. As a starting point, she focuses on how we see motion

SeminarPhysics of LifeRecording

Do leader cells drive collective behavior in Dictyostelium Discoideum amoeba colonies?

Sulimon Sattari
Hokkaido University
Aug 1, 2021

Dictyostelium Discoideum (DD) are a fascinating single-cellular organism. When nutrients are plentiful, the DD cells act as autonomous individuals foraging their local vicinity. At the onset of starvation, a few (<0.1%) cells begin communicating with others by emitting a spike in the chemoattractant protein cyclic-AMP. Nearby cells sense the chemical gradient and respond by moving toward it and emitting a cyclic-AMP spike of their own. Cyclic-AMP activity increases over time, and eventually a spiral wave emerges, attracting hundreds of thousands of cells to an aggregation center. How DD cells go from autonomous individuals to a collective entity remains an open question for more than 60 years--a question whose answer would shed light on the emergence of multi-cellular life. Recently, trans-scale imaging has allowed the ability to sense the cyclic-AMP activity at both cell and colony levels. Using both the images as well as toy simulation models, this research aims to clarify whether the activity at the colony level is in fact initiated by a few cells, which may be deemed "leader" or "pacemaker" cells. In this talk, I will demonstrate the use of information-theoretic techniques to classify leaders and followers based on trajectory data, as well as to infer the domain of interaction of leader cells. We validate the techniques on toy models where leaders and followers are known, and then try to answer the question in real data--do leader cells drive collective behavior in DD colonies?

SeminarNeuroscienceRecording

Using opsin genes to see through the eyes of a fish

Karen Carleton
University of Maryland
Jul 25, 2021

Many animals are highly visual. They view their world through photoreceptors sensitive to different wavelengths of light. Animal survival and optimal behavioral performance may select for varying photoreceptor sensitivities depending on animal habitat or visual tasks. Our goal is to understand what drives visual diversity from both an evolutionary and molecular perspective. The group of more than 2000 cichlid fish species are an ideal system for examining such diversity. Cichlid are a colorful group of fresh water fishes. They have undergone adaptive radiation throughout Africa and the new world and occur in rivers and lakes that vary in water clarity. They are also behaviorally complex, having diverse behaviors for foraging, mate choice and even parental care. As a result, cichlids have highly diverse visual systems with cone sensitivities shifting by 30-90 nm between species. Although this group has seven cone opsin genes, individual species differ in which subset of the cone opsins they express. Some species show developmental shifts in opsin expression, switching from shorter to longer wavelength opsins through ontogeny. Other species modify that developmental program to express just one of the sets, causing the large sensitivity differences. Cichlids are therefore natural mutants for opsin expression. We have used cichlid diversity to explore the relationship between visual sensitivities and ecology. We have also exploited the genomic power of the cichlid system to identify genes and mutations that cause opsin expression shifts. Ultimately, our goal is to learn how different cichlid species see the world and whether differences matter. Behavioral experiments suggest they do indeed use color vision to survive and thrive. Cichlids therefore are a unique model for exploring how visual systems evolve in a changing world.

SeminarNeuroscienceRecording

Complex Decision-Making in Primate Foraging

Alexandra Rosati & Ben Hayden
University of Michigan & University of Minnesota
May 24, 2021
SeminarNeuroscienceRecording

Neural mechanisms of active vision in the marmoset monkey

Jude Mitchell
University of Rochester
May 11, 2021

Human vision relies on rapid eye movements (saccades) 2-3 times every second to bring peripheral targets to central foveal vision for high resolution inspection. This rapid sampling of the world defines the perception-action cycle of natural vision and profoundly impacts our perception. Marmosets have similar visual processing and eye movements as humans, including a fovea that supports high-acuity central vision. Here, I present a novel approach developed in my laboratory for investigating the neural mechanisms of visual processing using naturalistic free viewing and simple target foraging paradigms. First, we establish that it is possible to map receptive fields in the marmoset with high precision in visual areas V1 and MT without constraints on fixation of the eyes. Instead, we use an off-line correction for eye position during foraging combined with high resolution eye tracking. This approach allows us to simultaneously map receptive fields, even at the precision of foveal V1 neurons, while also assessing the impact of eye movements on the visual information encoded. We find that the visual information encoded by neurons varies dramatically across the saccade to fixation cycle, with most information localized to brief post-saccadic transients. In a second study we examined if target selection prior to saccades can predictively influence how foveal visual information is subsequently processed in post-saccadic transients. Because every saccade brings a target to the fovea for detailed inspection, we hypothesized that predictive mechanisms might prime foveal populations to process the target. Using neural decoding from laminar arrays placed in foveal regions of area MT, we find that the direction of motion for a fixated target can be predictively read out from foveal activity even before its post-saccadic arrival. These findings highlight the dynamic and predictive nature of visual processing during eye movements and the utility of the marmoset as a model of active vision. Funding sources: NIH EY030998 to JM, Life Sciences Fellowship to JY

SeminarNeuroscienceRecording

Follow your Nose: Olfactory-driven foraging in mice & flies

Venkatesh Murthy & Thierry Emonet
Harvard University & Yale University
May 10, 2021
SeminarNeuroscienceRecording

The collective behavior of the clonal raider ant: computations, patterns, and naturalistic behavior

Asaf Gal
University of Rockefeller, NYC
May 4, 2021

Colonies of ants and other eusocial insects are superorganisms, which perform sophisticated cognitive-like functions at the level of the group. In my talk I will review our efforts to establish the clonal raider ant Ooceraea biroi as a lab model system for the systematic study of the principles underlying collective information processing in ant colonies. I will use results from two separate projects to demonstrate the potential of this model system: In the first, we analyze the foraging behavior of the species, known as group raiding: a swift offensive response of a colony to the detection of a potential prey by a scout. By using automated behavioral tracking and detailed analysis we show that this behavior is closely related to the army ant mass raid, an iconic collective behavior in which hundreds of thousands of ants spontaneously leave the nest to go hunting, and that the evolutionary transition between the two can be explained by a change in colony size alone. In the second project, we study the emergence of a collective sensory response threshold in a colony. The sensory threshold is a fundamental computational primitive, observed across many biological systems. By carefully controlling the sensory environment and the social structure of the colonies we were able to show that it also appear in a collective context, and that it emerges out of a balance between excitatory and inhibitory interactions between ants. Furthermore, by using a mathematical model we predict that these two interactions can be mapped into known mechanisms of communication in ants. Finally, I will discuss the opportunities for understanding collective behavior that are opening up by the development of methods for neuroimaging and neurocontrol of our ants.

SeminarPsychology

Beyond visual search: studying visual attention with multitarget visual foraging tasks

Jérôme Tagu
University of Bordeaux
Apr 21, 2021

Visual attention refers to a set of processes allowing selection of relevant and filtering out of irrelevant information in the visual environment. A large amount of research on visual attention has involved visual search paradigms, where observers are asked to report whether a single target is present or absent. However, recent studies have revealed that these classic single-target visual search tasks only provide a snapshot of how attention is allocated in the visual environment, and that multitarget visual foraging tasks may capture the dynamics visual attention more accurately. In visual foraging, observers are asked to select multiple instances of multiple target types, as fast as they can. A critical question in foraging research concerns the factors driving the next target selection. Most likely, this would require two steps: (1) identifying a set of candidates for the next selection, and (2) selecting the best option among these candidates. After having briefly described the advantage of visual foraging over visual search, I will review recent visual foraging studies testing the influence of several manipulations (e.g., target crypticity, number of items, selection modality) on foraging behaviour. Overall, these studies revealed that the next target selection during visual foraging is determined by the competition between three factors: target value, target proximity, and priming of features. I will explain how the analysis of individual differences in foraging behaviour can provide important information, with the idea that individuals show by-default internal biases toward value, proximity and priming that determine their search strategy and behaviour.

SeminarNeuroscienceRecording

Food for Thought: How internal states shape foraging behavior

Audrey Dussutour & Rong Gong
CNRS & HHMI Janelia Research Campus
Apr 19, 2021
SeminarNeuroscienceRecording

A Unified Framework for Foraging Theory

Ahmed El Hady & Nils Kolling
Princeton University & University of Oxford
Apr 12, 2021
SeminarNeuroscienceRecording

Foraging at the Limit: Cognitive capabilities of birds and bees

Susan Healy & Lars Chittka
University of St. Andrews; Queen Mary, University of London
Mar 29, 2021
SeminarNeuroscienceRecording

What is Foraging?

Alex Kacelnik
University of Oxford
Mar 15, 2021

Foraging research aims at describing, understanding, and predicting resource-gathering behaviour. Optimal Foraging Theory (OFT) is a sub-discipline that emphasises that these aims can be aided by segmenting foraging behaviour into discrete problems that can be formally described and examined with mathematical maximization techniques. Examples of such segmentation are found in the isolated treatment of issues such as patch residence time, prey selection, information gathering, risky choice, intertemporal decision making, resource allocation, competition, memory updating, group structure, and so on. Since foragers face these problems simultaneously rather than in isolation, it is unsurprising that OFT models are ‘always wrong but sometimes useful’. I will argue that a progressive optimal foraging research program should have a defined strategy for dealing with predictive failure of models. Further, I will caution against searching for brain structures responsible for solving isolated foraging problems.

SeminarNeuroscience

Dopamine and the algorithmic basis of foraging decisions

Sarah Starosta
Washington University St. Louis
Jan 27, 2021
SeminarNeuroscienceRecording

Dopamine and the algorithmic basis of foraging decisions

Sarah Starosta
Wash U
Nov 17, 2020
SeminarNeuroscienceRecording

A sense of time in human evolution

Alexandra Rosati
University of Michigan
Oct 22, 2020

What psychological mechanisms do primates use to engage in self-control, and what is the ultimate function of these skills? I will argue that a suite of decision-making capacities, including choices about the timing of benefits, evolved in the context of foraging behaviors and vary with ecological complexity across species. Then, I will examine how these foraging capacities can be generalized to solve novel problems posing temporal costs that are important for humans, such as cooking food, and can therefore underpin evolutionary transitions in behavior. Finally, I will present work testing the hypothesis that a limited future time horizon constrains the expression of other complex abilities in nonhumans, explaining the emergence of human-unique forms of social cognition and behavior.

SeminarPhysics of Life

“DNA sensing in Bacillus subtilis”

Christopher V. Rao
University of Illinois at Urbana-Champaign
Oct 12, 2020

Chemotaxis is the process where cells move in response to external chemical gradients. It has mainly been viewed as a foraging and defense mechanism, enabling bacteria to move towards nutrients or away from toxins. We recently found that the Gram-positive bacterium Bacillus subtilis performs chemotaxis towards DNA. While DNA can serve as a nutrient for B. subtilis, our results suggest that the response is not to DNA itself but rather to the information encoded within the DNA. In particular, we found that B. subtilis prefers DNA from more closely related species. These results suggest that B. subtilis seeks out specific DNA sequences that are more abundant in its own and related chromosomes. In this talk, I will discuss the mechanism of DNA sensing and chemotaxis in B. subtilis. I will conclude by discussing the physiological significance of DNA chemotaxis with regards to natural competence and kin identification.

SeminarNeuroscience

Reward foraging task, and model-based analysis reveal how fruit flies learn the value of available options

Duda Kvitsiani
Aarhus University
Jul 28, 2020

Understanding what drives foraging decisions in animals requires careful manipulation of the value of available options while monitoring animal choices. Value-based decision-making tasks, in combination with formal learning models, have provided both an experimental and theoretical framework to study foraging decisions in lab settings. While these approaches were successfully used in the past to understand what drives choices in mammals, very little work has been done on fruit flies. This is even though fruit flies have served as a model organism for many complex behavioural paradigms. To fill this gap we developed a single-animal, trial-based decision-making task, where freely walking flies experienced optogenetic sugar-receptor neuron stimulation. We controlled the value of available options by manipulating the probabilities of optogenetic stimulation. We show that flies integrate a reward history of chosen options and forget value of unchosen options. We further discover that flies assign higher values to rewards experienced early in the behavioural session, consistent with formal reinforcement learning models. Finally, we show that the probabilistic rewards affect walking trajectories of flies, suggesting that accumulated value is controlling the navigation vector of flies in a graded fashion. These findings establish the fruit fly as a model organism to explore the genetic and circuit basis of value-based decisions.

SeminarNeuroscience

The ecology of collective behaviour

Deborah Gordon
Stanford University
May 26, 2020

Collective behaviour operates without central control, through interactions among individuals. The collective behaviour of ant colonies is based on simple olfactory interactions. Ant species differ enormously in the algorithms that regulate collective behaviour, reflecting diversity in ecology. I will contrast two species in very different ecological situations. Harvester ant colonies in the desert, where water is scarce but conditions are stable, regulate foraging to conserve water. Response to positive feedback from olfactory interactions depends on the risk of water loss, mediated by dopamine neurophysiology. For arboreal turtle ants in the tropical forest, life is easy but unpredictable, and a highly modular system uses negative feedback to sustain activity. In all natural systems, from ant colonies to brains, collective behaviour evolves in relation with changing conditions. Similar dynamics in environmental conditions may lead to the evolution of similar processes to regulate collective behaviour.

SeminarNeuroscience

Cortical circuits for olfactory navigation

Cindy Poo
Champalimaud
May 13, 2020

Olfactory navigation is essential for the survival of living beings from unicellular organisms to mammals. In the wild, rodents combine odor information with an internal spatial representation of the environment for foraging and navigation. What are the neural circuits in the brain that implement these behaviours? My research addresses this question by examining the synaptic circuits and neural population activity in the olfactory cortex to understand the integration of olfactory and spatial information. Primary olfactory (piriform) cortex (PCx) has long been recognized as a highly associative brain structure. What is the behavioural and functional role of these associative synapses in PCx? We designed an odor-cued navigation task, where rats must use both olfactory and spatial information to obtain water rewards. We recorded from populations of posterior piriform cortex (pPCx) neurons during behaviour and found that individual neurons were not only odor-selective, but also fired differentially to the same odor sampled at different locations, forming an “olfactory place map”. Spatial locations can be decoded from simultaneously recorded pPCx population, and spatial selectivity is maintained in the absence of odors, across behavioural contexts. This novel olfactory place map is consistent with our finding for a dominant role of associative excitatory synapses in shaping PCx representations, and suggest a role for PCx spatial representations in supporting olfactory navigation. This work not only provides insight into the neural basis for how odors can be used for navigation, but also reveals PCx as a prime site for addressing the general question of how sensory information is anchored within memory systems and combined with cognitive maps to guide flexible behaviour.

ePoster

Conjunctive theta- and ripple-frequency oscillations across hippocampal strata of foraging rats

COSYNE 2022

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

Investigating effort and time sensitivities in rodents performing a treadmill-based foraging task

COSYNE 2022

ePoster

State-dependent Reward Encoding in Cortical Activity During Dynamic Foraging

COSYNE 2022

ePoster

State-dependent Reward Encoding in Cortical Activity During Dynamic Foraging

COSYNE 2022

ePoster

Mice alternate between inference- and stimulus-bound strategies during probabilistic foraging

Daniel Burnham, Zachary Mainen, Fanny Cazettes, Luca Mazzucato

COSYNE 2023

ePoster

Emergent small-group foraging under variable group size, food scarcity, and sensory capabilities

Zhouyang Lu, Satpreet H Singh, Sonja Johnson-Yu, Aaron Walsman, Kanaka Rajan

COSYNE 2025

ePoster

Ethological foraging fingerprints reveal heterogeneous effects of serotonergic neuromodulation

Daniel Burnham, Elisabete Augusto, Zachary Mainen, Fanny Cazettes, Luca Mazzucato

COSYNE 2025

ePoster

ForageWorld: RL agents in complex foraging arenas develop internal maps for navigation and planning

Ryan Badman, Riley Simmons-Edler, Felix Berg, Joshua Lunger, John Vastola, William Qian, Kanaka Rajan

COSYNE 2025

ePoster

A global learning rate allows rapid emergence of near-optimal foraging across many options

Laura Grima, Yipei Guo, Lakshmi Narayan, Ann Hermundstad, Joshua Dudman

COSYNE 2025

ePoster

Uncovering behavioral strategies: Training mice and AI on a shared foraging task

Marius Schneider, Jing Peng, Yuchen Hou, Joe Canzano, Spencer Smith, Michael Beyeler

COSYNE 2025

ePoster

Asymmetrical modulations of decision and movement speeds during self-paced foraging reveal the dorsal striatum selective contribution to effort sensitivity

Thomas Morvan, Marie Kurtz, Christophe Eloy, David Robbe

FENS Forum 2024

ePoster

How does frontal cortex impact exploratory decision making in Mongolian gerbils? Insights from a probabilistic foraging paradigm

Parthiban Saravanakumar, Vishal Kannan, Maike Vollmer, Frank W. Ohl, Max F.K. Happel

FENS Forum 2024

ePoster

Effort-based decision-making versus spontaneous foraging tasks reveal divergence in antidepressant effects on motivation in mice

Caterina Marangoni, Foteini Xeni, Emma Robinson, Megan Jackson

FENS Forum 2024

ePoster

From patch to patch: A 3D pose tracking study of pigeon foraging behavior

Guillermo Hidalgo Gadea, Mary Flaim, Patrick Anselme, Onur Güntürkün

FENS Forum 2024

ePoster

Network modulation using pathway and neuromodulator specific chemogenetics in macaque frontal cortex: Foraging behaviour, imaging and histology

Clémence Gandaux, Jérôme Sallet, Emmanuel Procyk, Charles Wilson

FENS Forum 2024

ePoster

Understanding trait anxiety through foraging decision

Peeusa Mitra, Arjun Ramakrishnan

FENS Forum 2024

ePoster

What role for the striatum in motor control? Insights from unilateral perturbation during foraging

Maud Schaffhauser, Thomas Morvan, Alice Le Bars, Kenza Amroune, Ingrid Bureau, David Robbe

FENS Forum 2024