Functional Electrical Stimulation
functional electrical stimulation
In pursuit of a universal, biomimetic iBCI decoder: Exploring the manifold representations of action in the motor cortex
My group pioneered the development of a novel intracortical brain computer interface (iBCI) that decodes muscle activity (EMG) from signals recorded in the motor cortex of animals. We use these synthetic EMG signals to control Functional Electrical Stimulation (FES), which causes the muscles to contract and thereby restores rudimentary voluntary control of the paralyzed limb. In the past few years, there has been much interest in the fact that information from the millions of neurons active during movement can be reduced to a small number of “latent” signals in a low-dimensional manifold computed from the multiple neuron recordings. These signals can be used to provide a stable prediction of the animal’s behavior over many months-long periods, and they may also provide the means to implement methods of transfer learning across individuals, an application that could be of particular importance for paralyzed human users. We have begun to examine the representation within this latent space, of a broad range of behaviors, including well-learned, stereotyped movements in the lab, and more natural movements in the animal’s home cage, meant to better represent a person’s daily activities. We intend to develop an FES-based iBCI that will restore voluntary movement across a broad range of motor tasks without need for intermittent recalibration. However, the nonlinearities and context dependence within this low-dimensional manifold present significant challenges.
Neuroscience tools for the 99%: On the low-fi development of high-tech lab gear for hands-on neuroscience labs and exploratory research
The public has a fascination with the brain, but little attention is given to neuroscience education prior to graduate studies in brain-related fields. One reason may be the lack of low cost and engaging teaching materials. To address this, we have developed a suite of open-source tools which are appropriate for amateurs and for use in high school, undergraduate, and graduate level educational and research programs. This lecture will provide an overview of our mission to re-engineer research-grade lab equipment using first principles and will highlight basic principles of neuroscience in a "DIY" fashion: neurophysiology, functional electrical stimulation, micro-stimulation effect on animal behavior, neuropharmacology, even neuroprosthesis and optogenetics! Finally, with faculty academic positions becoming a scarce resource, I will discuss an alternative academic career path: entrepreneurship. It is possible to be an academic, do research, publish papers, present at conferences and train students all outside the traditional university setting. I will close by discussing my career path from graduate student to PI/CEO of a startup neuroscience company.