Functional
functional neuroimaging
Joseph Lizier
The successful candidates will join a dynamic interdisciplinary collaboration between A/Prof Mac Shine (Brain and Mind Centre), A/Prof Joseph Lizier (School of Computer Science) and Dr Ben Fulcher (School of Physics), within the University's Centre for Complex Systems, focused on advancing our understanding of brain function and cognition using cutting-edge computational and neuroimaging techniques at the intersection of network neuroscience, dynamical systems and information theory. The positions are funded by a grant from the Australian Research Council 'Evaluating the Network Neuroscience of Human Cognition to Improve AI'.
Structural & Functional Neuroplasticity in Children with Hemiplegia
About 30% of children with cerebral palsy have congenital hemiplegia, resulting from periventricular white matter injury, which impairs the use of one hand and disrupts bimanual co-ordination. Congenital hemiplegia has a profound effect on each child's life and, thus, is of great importance to the public health. Changes in brain organization (neuroplasticity) often occur following periventricular white matter injury. These changes vary widely depending on the timing, location, and extent of the injury, as well as the functional system involved. Currently, we have limited knowledge of neuroplasticity in children with congenital hemiplegia. As a result, we provide rehabilitation treatment to these children almost blindly based exclusively on behavioral data. In this talk, I will present recent research evidence of my team on understanding neuroplasticity in children with congenital hemiplegia by using a multimodal neuroimaging approach that combines data from structural and functional neuroimaging methods. I will further present preliminary data regarding functional improvements of upper extremities motor and sensory functions as a result of rehabilitation with a robotic system that involves active participation of the child in a video-game setup. Our research is essential for the development of novel or improved neurological rehabilitation strategies for children with congenital hemiplegia.
Predictive modeling, cortical hierarchy, and their computational implications
Predictive modeling and dimensionality reduction of functional neuroimaging data have provided rich information about the representations and functional architectures of the human brain. While these approaches have been effective in many cases, we will discuss how neglecting the internal dynamics of the brain (e.g., spontaneous activity, global dynamics, effective connectivity) and its underlying computational principles may hinder our progress in understanding and modeling brain functions. By reexamining evidence from our previous and ongoing work, we will propose new hypotheses and directions for research that consider both internal dynamics and the computational principles that may govern brain processes.
The future of neuropsychology will be open, transdiagnostic, and FAIR - why it matters and how we can get there
Cognitive neuroscience has witnessed great progress since modern neuroimaging embraced an open science framework, with the adoption of shared principles (Wilkinson et al., 2016), standards (Gorgolewski et al., 2016), and ontologies (Poldrack et al., 2011), as well as practices of meta-analysis (Yarkoni et al., 2011; Dockès et al., 2020) and data sharing (Gorgolewski et al., 2015). However, while functional neuroimaging data provide correlational maps between cognitive functions and activated brain regions, its usefulness in determining causal link between specific brain regions and given behaviors or functions is disputed (Weber et al., 2010; Siddiqiet al 2022). On the contrary, neuropsychological data enable causal inference, highlighting critical neural substrates and opening a unique window into the inner workings of the brain (Price, 2018). Unfortunately, the adoption of Open Science practices in clinical settings is hampered by several ethical, technical, economic, and political barriers, and as a result, open platforms enabling access to and sharing clinical (meta)data are scarce (e.g., Larivière et al., 2021). We are working with clinicians, neuroimagers, and software developers to develop an open source platform for the storage, sharing, synthesis and meta-analysis of human clinical data to the service of the clinical and cognitive neuroscience community so that the future of neuropsychology can be transdiagnostic, open, and FAIR. We call it neurocausal (https://neurocausal.github.io).
Visualising time in the human brain
We all have a sense of time. Yet it is a particularly intangible sensation. So how is our “sense” of time represented in the brain? Functional neuroimaging studies have consistently identified a network of regions, including Supplementary Motor Area and basal ganglia, that are activated when participants make judgements about the duration of currently unfolding events. In parallel, left parietal cortex and cerebellum are activated when participants predict when future events are likely to occur. These structures are activated by temporal processing even when task goals are purely perceptual. So why should the perception of time be represented in regions of the brain that have more traditionally been implicated in motor function? One possibility is that we learn about time through action. In other words, action could provide the functional scaffolding for learning about time in childhood, explaining why it has come to be represented in motor circuits of the adult brain.
Neural mechanisms of altered states of consciousness under psychedelics
Interest in psychedelic compounds is growing due to their remarkable potential for understanding altered neural states and their breakthrough status to treat various psychiatric disorders. However, there are major knowledge gaps regarding how psychedelics affect the brain. The Computational Neuroscience Laboratory at the Turner Institute for Brain and Mental Health, Monash University, uses multimodal neuroimaging to test hypotheses of the brain’s functional reorganisation under psychedelics, informed by the accounts of hierarchical predictive processing, using dynamic causal modelling (DCM). DCM is a generative modelling technique which allows to infer the directed connectivity among brain regions using functional brain imaging measurements. In this webinar, Associate Professor Adeel Razi and PhD candidate Devon Stoliker will showcase a series of previous and new findings of how changes to synaptic mechanisms, under the control of serotonin receptors, across the brain hierarchy influence sensory and associative brain connectivity. Understanding these neural mechanisms of subjective and therapeutic effects of psychedelics is critical for rational development of novel treatments and for the design and success of future clinical trials. Associate Professor Adeel Razi is a NHMRC Investigator Fellow and CIFAR Azrieli Global Scholar at the Turner Institute of Brain and Mental Health, Monash University. He performs cross-disciplinary research combining engineering, physics, and machine-learning. Devon Stoliker is a PhD candidate at the Turner Institute for Brain and Mental Health, Monash University. His interest in consciousness and psychiatry has led him to investigate the neural mechanisms of classic psychedelic effects in the brain.
A macaque connectome for simulating large-scale network dynamics in The VirtualBrain
TheVirtualBrain (TVB; thevirtualbrain.org) is a software platform for simulating whole-brain network dynamics. TVB models link biophysical parameters at the cellular level with systems-level functional neuroimaging signals. Data available from animal models can provide vital constraints for the linkage across spatial and temporal scales. I will describe the construction of a macaque cortical connectome as an initial step towards a comprehensive multi-scale macaque TVB model. I will also describe our process of validating the connectome and show an example simulation of macaque resting-state dynamics using TVB. This connectome opens the opportunity for the addition of other available data from the macaque, such as electrophysiological recordings and receptor distributions, to inform multi-scale models of brain dynamics. Future work will include extensions to neurological conditions and other nonhuman primate species.
Precision and Temporal Stability of Directionality Inferences from Group Iterative Multiple Model Estimation (GIMME) Brain Network Models
The Group Iterative Multiple Model Estimation (GIMME) framework has emerged as a promising method for characterizing connections between brain regions in functional neuroimaging data. Two of the most appealing features of this framework are its ability to estimate the directionality of connections between network nodes and its ability to determine whether those connections apply to everyone in a sample (group-level) or just to one person (individual-level). However, there are outstanding questions about the validity and stability of these estimates, including: 1) how recovery of connection directionality is affected by features of data sets such as scan length and autoregressive effects, which may be strong in some imaging modalities (resting state fMRI, fNIRS) but weaker in others (task fMRI); and 2) whether inferences about directionality at the group and individual levels are stable across time. This talk will provide an overview of the GIMME framework and describe relevant results from a large-scale simulation study that assesses directionality recovery under various conditions and a separate project that investigates the temporal stability of GIMME’s inferences in the Human Connectome Project data set. Analyses from these projects demonstrate that estimates of directionality are most precise when autoregressive and cross-lagged relations in the data are relatively strong, and that inferences about the directionality of group-level connections, specifically, appear to be stable across time. Implications of these findings for the interpretation of directional connectivity estimates in different types of neuroimaging data will be discussed.
Multitask performance humans and deep neural networks
Humans and other primates exhibit rich and versatile behaviour, switching nimbly between tasks as the environmental context requires. I will discuss the neural coding patterns that make this possible in humans and deep networks. First, using deep network simulations, I will characterise two distinct solutions to task acquisition (“lazy” and “rich” learning) which trade off learning speed for robustness, and depend on the initial weights scale and network sparsity. I will chart the predictions of these two schemes for a context-dependent decision-making task, showing that the rich solution is to project task representations onto orthogonal planes on a low-dimensional embedding space. Using behavioural testing and functional neuroimaging in humans, we observe BOLD signals in human prefrontal cortex whose dimensionality and neural geometry are consistent with the rich learning regime. Next, I will discuss the problem of continual learning, showing that behaviourally, humans (unlike vanilla neural networks) learn more effectively when conditions are blocked than interleaved. I will show how this counterintuitive pattern of behaviour can be recreated in neural networks by assuming that information is normalised and temporally clustered (via Hebbian learning) alongside supervised training. Together, this work offers a picture of how humans learn to partition knowledge in the service of structured behaviour, and offers a roadmap for building neural networks that adopt similar principles in the service of multitask learning. This is work with Andrew Saxe, Timo Flesch, David Nagy, and others.
Unravelling brain connectopathy in autism with cross-species fMRI
Electrical microstimulation of non-human primate mediodorsal thalamus during functional neuroimaging impacts dorsal anterior cingulate cortex
FENS Forum 2024